FUNCTIONS

String = DPL_GetDayName(<Long>,<Short>)

This function will return the name of the day of the week for the date that is passed in.

Parameters:

Long
-
Date to use. Default is today.

Short
-
Return Type: Valid Entries are 1 or 2

If 1 Long days are returned (Monday)

If 2 short days are returned (Mon)

Defaults to 1

Short = DPL_GetDOY(<LONG>)

This function will return a short number representative of the day of the year for a given date.

Parameters:

Long
-
Date to use. Default is today.

Byte = DPL_GetQtrOfYr(<Long>)

This function will return a byte indicating what quarter (1-4) of year a date is in.

Parameters:

Long
-
Date to use. Default is today.

Short = DPL_GetDaysLeftInYr(<Long>)

This function will return the number of days left in the year from a given date.

Parameters:

Long
-
Date to use. Default is today.

Byte = DPL_GetDaysInMon(<Long>)

This function will return the number of days in a month for a given date.

Parameters:

Long
-
Date to use. Default is today.

Byte = DPL_GetDOW(<Long>)

This function will return the Day of week (0=Sunday, 6=Saturday) for a given date.

Parameters:

Long
-
Date to use. Default is today.

Byte = DPL_IsLeapYr(<Long>)

This function will return TRUE or FALSE depending on if the year for a given date is a Leap Year.

Parameters:

Long
-
Date to use. Default is today.

String = DPL_GetMonName(<Long>,<Byte>)

This function returns the name of the month for a given date.

Parameters:

Long
-
Date to use. Default is today.

Short
-
Return Type: Valid Entries are 1 or 2

If 1 Long months are returned (March)

If 2 short days are returned (Mar)

Defaults to 1

Long = DPL_DiffInDays(<Long>,<Long>)

This function will return the number of days between two dates.

Parameters:

Long
-
Start date to use. Default is today.

Long
-
End date to use. Default is today.

LONG = DPL_DiffInMin(<Long>,<Long>,<Long>,<Long>)

This function will return the elapsed time in minutes between two dates and times. The function will cross multiple dates if needed. The function will round UP to the nearest minute.

Parameters:

Long
-
Start date to use. Default is today.

Long
-
Start time to use. Default is clock.

Long
-
Ending date to use. Default is today.

Long
-
Ending time to use. Default is clock.

LONG = DPL_RoundUpMin(<Long>,<Short>)

Rounds the passed in minutes up to the nearest number devisable by passed in Round to number. This function will not round the number unless it currently is not devisable evenly.

This function is very good if you are doing billing. For Example if you wanted to bill every five minutes and you want to always round up to the next 5 minutes. You would use 5 as your Round To Number.

Lets say that you worked 332 minutes (5 hours 32 minutes) and are doing billing in 5 minute increments. You would call this function. NewMin = DPL_RoundUpMin(332,5). When it returns NewMin will contain 335 (you just gained 3 minutes on your bill.

Parameters:

Long
-
Original number to start.

 short -
Number to be devisable by. (1-60)

LONG = DPL_DiffInSec(<Long>,<Long>,<Long>,<Long>)

This function will return the elapsed time in seconds between two dates and times. The function will cross multiple dates if needed. The function will round UP to the nearest minute.

Parameters:

Long
-
Start date to use. Default is today.

Long
-
Start time to use. Default is clock.

Long
-
Ending date to use. Default is today.

Long
-
Ending time to use. Default is clock.

LONG = DPL_IncMonth(<Long>,<Short>)

This function will return a properly incremented/decremented month starting with a given date. If the day of month of the new month is less than the number of days in that month the function will set to the last day of the new month. For example if you were going from Jan 31st and adding 1 month the system will change the day of month to either be the 28th or 29th of Feb depending on if it is leap year or not.

Parameters:

Long
-
Start date to use. Default is today.

Short -
Number of Months To Increment or

Decrement. To decrement pass a negative value. To increment pass a positive value. The Default is 1.

? = DPL_Roundx(?,?)

This function will return (any numeric datatype) the rounded amount. It rounds down if the devisable remainder is less than .5. It rounds up if the devisable remainder is greater or equal to .5.

I wrote this for an example it should work but has not been tested.

Parameters:

?
-
Original Number.

?
-
Make devisable by this number.

Examples:

AMOUNTPAID
Decimal(7,2)

AmountPaid = 5.32

AmountPaid = DPL_Roundx(AmountPaid,.05)

! AmountPaid should now equal 5.30

AmountPaid = 5.33

AmountPaid = DPL_Roundx(AmountPaid,.05)

! AmountPaid should now equal 5.35

AmountPaid = 563.65

AmountPaid = Dpl_Roundx(AmountPaid,5)

! AmountPaid should now equal 565.00

AmountPaid = 563.65

AmountPaid = Dpl_Roundx(AmountPaid,1)

! Amount Paid should now equal 564.00

AmountPaid = 563.65

AmountPaid = Dpl_Roundx(AmountPaid,10)

! AmountPaid should now equal 560.00

String = DPL_FormatFromMin(Long,Byte)

This function will return a formated string for the number of minutes passed in.

Parameters:
LONG
-
NumMin -
Number of Minutes that should

be formated.

Byte
-
RefType -
Tells how to format the

return string.

The First two Formats Will ignore

Negative Values.

1 = 2 Days 5 Hours 3 Minutes

2 = 1 Day 5:03

3 = 2 Days 5 Hours 3 Minutes (Remaining)

4 = 1 Day 5:03 (Remaining)

5 = (-) 1 Day 5 Hours 3 Minutes

6 = (-) 2 Days 5:03

7 = (Negative) 1 Day 5 Hours 3 Minutes

8 = (Negative) 2 Days 3:05

String = DPL_FormatFromSec(Long,Byte)

This function will return a formated string for the number of seconds passed in.

Parameters:
LONG
-
NumSec -
Number of Seconds that should

be formated.

Byte
-
RefType -
Tells how to format the

return string.

The First two Formats Will ignore

Negative Values.

1 = 2 Days 5 Hours 3 Minutes 2 Seconds

2 = 1 Day 5:03:02

3 = 2 Days 5 Hours 3 Minutes 2 seconds(Remaining)

4 = 1 Day 5:03:02 (Remaining)

5 = (-) 1 Day 5 Hours 3 Minutes 2 Seconds

6 = (-) 2 Days 5:03:02

7 = (Negative) 1 Day 5 Hours 3 Minutes 2 Seconds

8 = (Negative) 2 Days 3:05:02

