
CLARION 5

Learning Your ABCs

Making A Smooth Transition
from Legacy to ABC

2 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

COPYRIGHT 1999 by TopSpeed Corporation
All rights reserved.

This publication is protected by copyright and all rights are reserved by TopSpeed
Corporation. It may not, in whole or part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from TopSpeed Corporation.

This publication supports Clarion 5. It is possible that it may contain technical or
typographical errors. TopSpeed Corporation provides this publication “as is,” without
warranty of any kind, either expressed or implied.

TopSpeed Corporation
150 East Sample Road
Pompano Beach, Florida 33064
(954) 785-4555

Trademark Acknowledgements:
TopSpeed is a registered trademark of TopSpeed Corporation.
Clarion 5 is a trademark of TopSpeed Corporation.
Btrieve is a registered trademark of Pervasive Software.
Microsoft Windows and Visual Basic are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0799)

TABLE OF CONTENTS 3

TABLE OF CONTENTS

Preface: A New Car 6

1 - INTRODUCTION 7
Before We Begin - All in Good Fun ... 8
What You’ll Find in this Book .. 9
How to Use this Handbook ... 10
Acknowledgments .. 11

2 - LEARNING THE ABC DEVELOPMENT MODEL 13
Preface .. 13
The New ABC Templates ... 13
The Benefits of Clarion Objects (over Legacy) .. 14
Why Bother with Conversion? ... 16
Leaving Legacy and Getting Started .. 19

3 - CONVERSION TOOLS 21
Tools to Port Legacy Applications to ABC 21

Application Converter .. 21
The ABC Templates are (mostly) Backward Compatible 22
Application Conversion .. 22
Conversion Hints and Messages ... 27
Other Issues .. 28
Making Your Own Rules .. 29
After Conversion: A little clean up ... 37
Mapping Legacy Embeds to the ABC equivalent .. 39

4 - THE ABC DEVELOPMENT ENVIRONMENT 47
The Abstract View 47

Terminology Review .. 48
Clarion Objects ... 49

Programming with Objects in Clarion 50
Step 1 - How the ABC Templates generate Clarion Objects 50
Step 2 - How Template Code is Customized when using the ABC Templates 50
What is an Embed Point? ... 50

4 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The Concrete View 52
Source Embeds in the ABC IDE .. 52
Embed Tree... 53
Using the Embeditor ... 58
Derivation - more support through the IDE.. 60
How do I find an embed point? .. 62
Looking at Generated Source ... 64

5 - GENERAL APPLICATION TECHNIQUES 71
Introduction .. 71
Error Handling (The ABC Error Class) .. 71
Naming Conventions .. 78
The Local Map ... 78
INI File Management with ABC .. 79
ABC Based Toolbars .. 81
The power of the ABC Translator Class ... 83
Popup Menus .. 84

6 - DATA AND FILE ACCESS TECHNIQUES 89
Data and File Access 89

Introduction .. 89
Overview... 90
ABC FileManager, RelationManager, BufferedPairsClass, ErrorClass 91
FieldPairsClass Concepts ... 93
Files, ABCs, and Legacy Applications ... 95
New ABC File Handling Capability ... 96
Advanced References ... 100

7 - WINDOW AND CONTROL TECHNIQUES 109
Introduction 109

Overview... 109

Resizer 110
The Resizer - Overview .. 110
WindowResize .. 110

Translator 117
Multi-Language Support - Overview .. 117

TABLE OF CONTENTS 5

8 - BROWSE PROCEDURE TECHNIQUES 121
Introduction 121

Overview... 121
Browse Box Template Features .. 122
Calling a Lookup from Edit-in-place ... 124
Combining Edit-in-place and an Update procedure ... 127

9 - REPORT AND PROCESS TECHNIQUES 133
Introduction 133

Overview... 133

Processes & Reports 134
The Progress window ... 134
Pause and Go .. 135
Child file processing ... 136
TakeRecord method .. 136
Sorting .. 136
Joins .. 137

Just Reports 139
The ABC Print Previewer ... 139
Date and Time... 140
Single record printing ... 141

INDEX 143

6 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Preface: A New Car
A man walks into a new car dealer. You see, he has been driving the “old
reliable” Legacy model for many years now. Although he can still push it a
few more miles, he knows that its time is running short, and it’s time for a
new model.

Much to his dismay, the Legacy model is no longer in production. He even
dares to look at other dealerships, but nothing resembles the old Legacy
model he is driving now. So, with resignation, he is back in the original
dealership, and decides to “kick the tires” on a new model.

He sees a sign that says “ABC Model” and decides to look under the hood.
Again, anxiety fills his heart as he sees that the engine of the old Legacy
model is a distant memory. There are parts under the hood that he has never
seen before, and other recognizable parts are in completely different
positions. He closes the hood in horror.

As usual, the salesman is starting to get on his nerves. “C’mon, this baby
can do this and that and is the best thing since sliced bread.” To get him off
his back, he decides to get in for a test drive.

At first everything seems alien to him...there are a lot of new buttons and
dials to learn. Even the seat needs adjusting, and it uses adjustment controls
like he’s never seen.

Nevertheless, there is still a key. And a gas pedal. And a brake.

He starts the ABC model, and the engine purrs. This baby can move! He
cruises off the lot, and begins to drive like he’s never driven before. A small
smile begins to curl on his lips, and he begins to forget why he was so
worried in the first place. A quick spin back to the dealership and our hero is
now the proud owner of a new car.

Here is your key, dear reader, to the ABC model. Along with this owner’s
manual.

By the way, some of you may have a Legacy model that no longer runs, or if
it does run, runs in the slow lane. This owner’s manual also has a special
section for you “do-it-yourselfers”, to help you rebuild that vehicle with
object power!

CHAPTER 1 INTRODUCTION 7

1 - INTRODUCTION

Welcome to the “Learning Your ABCs - Making a Smooth Transition from
Legacy to ABC” handbook.

This is the definitive guide for anyone using (or planning to use) the Clarion
ABC (Application Builder Class) templates found in our Enterprise,
Professional, or Web Editions. Although this document is written with the
legacy user (pre-ABC or Clarion templates) in mind, you should also find it
valuable if you are new to Clarion and the ABC templates.

Most of the information contained here is compiled from a wide variety of
sources. These include the existing TopSpeed documentation, TopSpeed
Education material, news groups and web sites. However, you will find new
information and techniques with ABC templates that are specifically created
for this handbook.

In addition to the main chapters outlined here, we focus on other key issues,
including:

• The benefits of Object Oriented Programming

• The similarities between ABC and Legacy generated source
code.

• The key features of the ABC templates and available tools.

• A detailed description of Embed Mapping.

• A list of the most commonly used embed points, and why they
are common.

Our goal for this handbook is to increase the number of users that employ the
ABC templates in their application projects. We also hope to help the
existing users with tips and techniques which will increase your productivity.

8 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Before We Begin - All in Good Fun

Overheard at a recent TopSpeed DevCon:

With Legacy (Clarion) templates we had to code our own bugs. In ABC we
can inherit them.

Q. How many ABC programmers does it take to screw in a lightbulb?
A. None. You just send a ChangeBulb message to the socket object!

Legacy gives you enough rope to hang yourself. ABC also gives you the tree
object to tie it to. OR....

...Legacy allows you to shoot yourself in the foot. ABC allows you to reuse
the bullet.

“Our application is an object-oriented system.
If we change anything, the users object.”

And one more...

An ABC programmer was walking along the beach when he found a lamp.
Upon rubbing the lamp a genie appeared who stated "I am the most powerful
genie in the world. I can grant you any wish you want, but only one wish."

The ABC programmer pulled out a map of the Mediterranean area and said
"I'd like there to be a just and lasting peace among the people in the Middle
East."

The genie responded, "Gee, I don't know. Those people have been fighting
since the beginning of time. I can do just about anything, but this is beyond
my limits."

The ABC programmer then said, "Well, I am an ABC programmer and my
programs have a lot of users. Please make all the users satisfied with my
programs, and let them ask sensible changes"

Genie: "Umm, let me see that map again."

CHAPTER 1 INTRODUCTION 9

What You’ll Find in this Book

This handbook is divided into the following parts:

• Introduction

Chapter 1 describes the purpose, scope and goals of this book.

• Learning the ABC development model

Chapter 2 provides a series of topics designed to familiarize you
with the ABC style of application development. The benefits of
Clarion Objects, features of ABC, and getting started with
conversion projects is featured here.

• Conversion Tools

Chapter 3 documents in detail the available conversion tools
designed to help the user convert legacy (Clarion) applications to
applications that are ABC template based.

• The ABC Development Environment

Chapter 4 is intended to get you up to speed with the new
environment in as little time as possible. Key areas of the
Clarion Integrated Development Environment (IDE) is
highlighted, including the Classes control and Embed areas.
Sample ABC generated code is also examined.

• General Application Techniques

Chapter 5 provides application specific (Global) tips and
techniques when using the ABC templates.

• Data and File Access Techniques

Chapter 6 provides tips and techniques using the ABC libraries
to access and control your application’s data.

• Window & Control Techniques

Chapter 7 provides information and helpful tips to configure
your window and specific controls using the ABC templates.

• Browse, List and Tree Techniques

Chapter 8 provides specific information concerning Browse
procedures, list boxes, and relational tree controls when using
the ABC templates.

• Report and Process Techniques

Chapter 9 focuses on the processing of your application’s data
into reports using the ABC templates. Import and Export
techniques using the ABC Process template are also discussed.

10 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

How to Use this Handbook

A primary goal in creating this book is to provide useful information to
anyone who is using, or plans to be using, the ABC templates. Based on
your current level and needs, there are three areas of useful information:

• If you need to get your legacy (Clarion template based)
applications upgraded to the ABC template classes, you should
start your reading in the Conversion Tools chapter. This chapter
provides information to help you “Quick Start” your conversion
project, and what to do after conversion is completed.

• If you haven’t decided whether or not you need to convert an
existing legacy application, or you are still in the dark
concerning the benefits of ABC templates, or you need an update
concerning the ABC template support in the Clarion IDE
(Integrated Development Environment), you should start reading
the Learning the ABC Development Model chapter. This chapter
presents the benefits of OOP and the ABC templates, identifies
and clarifies necessary terminology, and offers a thorough
examination of the application development’s built-in support
options.

• For the experienced ABC template user, there are a variety of
Techniques chapters, providing a quick review of the ABC
template support, related class libraries and their important
properties and methods, and popular embed techniques which
were accumulated from many sources. Each chapter is divided
into specific program functions, so you can locate and reference
the specific information you need.

CHAPTER 1 INTRODUCTION 11

Acknowledgments

There were many kind and knowledgeable people who helped to contribute
valuable information to this book. We would like to acknowledge them here:

◆ Mr. Bryce Campbell, who contributed information derived from
a helpful utility (TPLINFO) that every legacy to ABC user needs
to have in their tool kit. For more information about TPLINFO
and other related products, please visit Bryce at:

http://www.cix.co.uk/~bryce/

◆ Mr. Mike Hanson, who contributed contents of an article that
was published a little while ago concerning Application
Convertor Rules development. Mike’s products and services are
available at:

http://www.BoxsoftDevelopment.com

◆ A heart felt thanks to Mr. Roy Hawkes at the TopSpeed
Development Centre, who contributed many ideas and kept our
crew on track.

◆ To the Rens brothers, Peter and Arie, at Advantage Software.
Thank you again for your suggestions and encouragement. Your
atttention to detail has helped to make this a better book. Visit
them at:

http://www.advantages.nl/gbhoofd.htm

◆ Last, but certainly not least, many thanks to Mr. David Bayliss,
who helped to open our eyes to the mountain of ABC benefits.
His tips and insights to Class implementation are invaluable.
Many thanks again, David!

12 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

CHAPTER 2 LEARNING THE ABC D EVELOPMENT MODEL 13

2 - LEARNING THE ABC DEVELOPMENT MODEL

Preface

Much of the material in this chapter contains invaluable information and
tips concerning the benefits of migration from legacy applications to ABC.
This information is also found in your Clarion on line help, but also
contains additional material.

Legacy applications are defined as those applications using any template
set that is not derived from the base ABC template chain. Most legacy
applications are those that have been generated with the Clarion template
set.

Contrary to popular belief, Clarion programming has not experienced a
radical shift in the way that applications are designed, developed,
generated, compiled, and linked. The only thing that has really changed is
the prewritten code base supplied by the Clarion environment. What
follows is an explanation of the subtle differences in the way the two
template sets, the Application Builder Classes and the Clarion Templates,
function.

This section is designed to get you, the Legacy user, into the right frame of
mind for learning Clarion’s Objects, as defined in the Application Builder
Classes. When discussing template sets, and embedded code it is important
to understand that what we are dealing with is canned code: code that is
dropped into an application to perform a specific function.

The New ABC Templates

Although the ABC templates first shipped in December 1997, if you have
any legacy applications, these templates could still be new to you.

The Clarion Template chain (Legacy) was designed to write pre-tested,
procedural, Clarion code. Each template would generate all the code
necessary for whatever function it was designed for every time that
functionality was needed in an application. This is in stark contrast to the
elegant object oriented model of the ABCs, where the actual code is only
placed into the application once, and then referenced by the templates as
needed. Both template sets are designed to place prewritten code into your
application.

14 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The ABC Templates are significantly different than the Clarion for Windows
2.0 (and earlier) templates. Specifically, the new templates generate less
code overall. A much higher portion of the generated code is object oriented
code, taking advantage of the Clarion Application Builder Class Libraries.
Therefore, much of the functionality in the templates is moved out of the
generated source and into the static source of the Application Builder Class
Libraries.

From the developer’s viewpoint , the ABC templates possess many
similarities with your legacy applications. The core programming paradigms
(Menu, Browse, Form, Report, etc.) have not changed, only many features
are added to make your template based development more efficient.

Moving functionality to the Application Builder Classes does not mean the
runtime behavior of your application is inaccessible. You can still control
your program’s behavior through the use of embedded source code (usually
with the same embed points available in the CW2.x templates, or comparable
embed point in ABC), plus you can derive your own class methods and
properties to override the CLARION Application Builder Classes. The new
Embeditor feature makes source modification easier than ever before.

The Benefits of Clarion Objects (over Legacy)

You will find when searching our existing documentation, company web site,
or on-line newsgroups, that a lot of effort has been expended to explain the
benefits and virtues of Object Oriented Programming, or OOP.

In order to better understand the concepts presented in this handbook, let’s
start thinking less about OOP and more about Clarion objects.

Definition: A Clarion object is a logical grouping of properties (legacy:
think variables) and methods (legacy:think procedures) that
are designed to accomplish a related collection of program
tasks.

Properties are values (data) that control an objects’ behavior. Methods are
specific actions or tasks (prototypes) that are performed by program
instructions within the object.

An object binds together data and prototypes. A class defines the rules for
creating different objects of the same type, that is, they have the same data
members and member prototypes. Relationships between classes are
expressed using inheritance, containment (encapsulation) and templates. The
result is that Clarion objects are defined to the user through their behavior,
while hiding the data and specific procedures that cause that behavior. This
allows the specific implementation of an object to change without modifying
the way it is used by a program at all.

CHAPTER 2 LEARNING THE ABC D EVELOPMENT MODEL 15

In contrast, legacy programming paradigms lack these features. The modular
paradigm allows abstraction of data through the partitioning of the program
into modules, but software re-use is restricted because of the lack of a
mechanism to express relationships between modules.

The procedural paradigm does not group data and subroutines together in
any way. A program is looked upon as a series of unrelated procedures
operating on the same set of global data.

Before we introduce additional terminology, let’s look at the benefits of
using Clarion Objects:

• Lines of code are reduced.
Clarion objects are more flexible than a single procedure or
routine writtten in legacy. They can change their characteristics
based on the type of event or message that you can pass to it. So
one browse object can be used for every browse procedure in
your applications.

Example: A simple browse generated in Clarion produced 1202 lines of
code. The same browse with file and features identical
generated with ABC based templates produced about 166
lines!

• Development time is decreased (long-term).
Some may argue with this point, especially those who are having
trouble with their conversion projects. But look at the growth of
the ABC templates over recent months. Each release produces a
more solid set of features, with new capabilities and options. For
example, the edit-in-place code that you had to hand code in
older versions of Clarion are a seamless feature today.

• Code is reusable.
Clarion Objects and the IDE offer the possibility of writing a
body of code once, and then reusing that code over and over
again. The built-in support for templates, inheritance, and
polymorphism ensures that object code can be used in many
different contexts.

• Program maintenance is easier
Clarion objects and ABC templates have revolutionized the
technology of application development, to allow large projects to
be completed and updated using multiple levels of developers.
To simplify the process, common programming problems are
first split into conceptual areas which can be addressed as
separate programming tasks (templates). Each of these tasks are
controlled by the ABC library, a collection of classes which
perform the tasks needed in a variety of areas in your
applications. The ABC libraries are highly optimized and have a
particular published set of rules for their use (See the
Application Handbook). They serve as the primary tool for
managing the complexity of large programming projects.

16 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

• Databases can contain multimedia and complex object types.
Yes, we do have data object in Clarion, expressed as BLOBs
(Binary Large Objects). Although not specific to the ABC
paradigm, it is nevertheless worthy to mention here.

Why Bother with Conversion?

Depending on the size of your existing legacy projects, there will be some
time that you will need to invest during the conversion process. What are the
real benefits of crossing over to the ABC templates? Do they compensate for
the time you will invest at the start of the application life cycle?

In addition to the benefits of Clarion Objects just discussed, there are many
other benefits for you to consider that are ABC template specific. Although
the following list is not comprehensive, it should give you a good idea of
what the ABC templates have to offer:

General

• Seamless integration of 3rd party substitutions on ABC code.

• Ability to name prefixes and other related elements used in
generated code (i.e. - PeopleBrowse. rather than BRW1.)

• Wizatron support (See the Wizatron Handbook)

• Legacy template features are “frozen”. On the other hand, ABC
templates continue to improve with each release.

• Avoidance of many ISL project errors in 16 bit applications
(specifically reduces the limitations on the number of browses
per window and files in the data dictionary).

• Automatic implementation of local maps (reducing project
compile time).

• Ability to preserve global variables between sessions (improved
INI Manager).

Toolbar

• Automatically references an active browse control populated on
a tab control. In legacy, this does not work for child browses
without hand (embed) coding.

• Configurability of text using the ABC Translator Class.

Popup Menus

• Restricted control in legacy, but fully configurable in ABC

• Icon support

• Configurability of text (via the Translator Class) leaving code
intact.

• Floating toolbox capability (dockable control)

CHAPTER 2 LEARNING THE ABC D EVELOPMENT MODEL 17

QBE

• Query by Example is only available in the ABC template chain.

Reports

• Ability to skip report preview under program control.

• Far more powerful previewer, fully configurable.

• Icons (and other arbitrary text) on progress bar.

• A better (more accurately calibrated) progress bar.

• Ability to easily hide progress bar.

• Child file view capability

• Date and Time control templates

• Pause / Go capability during printing

• Configurability of preview text

• Sort reports on any value

• Join files on the fly

• Ability to use report for single record printing

Browse

• Edit-in-place

• Improved efficiency (especially using SQL-based data)

• Ability to avoid delay loading the browse until visible (vital
when using update procedures with many children).

• File loaded browse support

• Filtered locators, which also can be configured to float right.

• Print button template

• Sort order on any value (non-keyed)

• Ability to switch between multiple update forms (including edit-
in-place)

• Selection bar stays in same position when returning from update.

• Selection bar stays in same position when switching tabs

• Ability to support ‘partially filled’ browses (vital for SQL-based
data)

• Ability to locate to ‘current’ location when first entering the
browse

• Smoothing of the browse refresh “flicker”

18 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Files

• New lazy open capability

• Support for on-server Referential Integrity

• Improved record buffer integrity during RI updates or deletes.

• All priming / validation done in one place (localized in an
object)

• Improved integrity when using field validation.

• Support for INLIST validation.

• Improved recovery from a sequential read of a locked record

• Handling of the ‘between procedure’ alias problem

Forms

• Cancelling a form with child records does not leave orphans.

• Additional field assignments capability on field lookup interface.

Errors

• Configurable text / priority levels

• Ability to override the built in error reporting screen

ASCII Files

• ASCII file driver enhancements.

Drop Combos

• Type-ahead lookup capability

• Page-loaded option for large files

• Support for multiple field linking keys

• Ability to add to a child file automatically even if the child has an
auto-incrementing key.

Resizer

• New and improved base strategies and configurability

Translator Class

• Translate any screen to the language of your choice. Fully
configurable.

Each of these features mentioned here are covered and explained in more
detail in the related Techniques chapter found later in this handbook.

CHAPTER 2 LEARNING THE ABC D EVELOPMENT MODEL 19

Leaving Legacy and Getting Started

After reviewing the benefits of programming with Clarion Objects and
examining the features of ABC templates, the next step is to begin the
conversion cycle from your legacy (Clarion) based application to ABC. Here
is the suggested sequence of tasks that are recommended if you are ready to
get started.

Run the Convertor Tool

• Run one of your existing legacy applications through the
Application Converter in Manual mode. Take notes as the
converter explains what it is changing and why (See the
Conversion Tools chapter for an in-depth description of this
process).

Compare the Legacy and ABC Embed Points

• To see the Clarion Template Embed Points side by side with
their corresponding ABC Template Embed Points:

From the Clarion IDE Menu,

1. Choose SetupSetupSetupSetupSetup ➤ Application OptionsApplication OptionsApplication OptionsApplication OptionsApplication Options

2. From the Application tab, set the Action for Legacy Embeds option to
Show all and generate all.

20 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

After setting this option, when you have an application file active
(loaded) and the Application Tree displayed:

1. RIGHT-CLICK on a selected procedure, and choose EmbedsEmbedsEmbedsEmbedsEmbeds to open the
Embeditor.

Upgrade your source to Object Syntax

The Conversion Tools chapter contains specific guidelines for replacing
selected legacy template code with appropriate object syntax.

Object syntax is defined as explicitly referencing any member of any
complex structure by prepending the label of the structure containing the
field to the field label, separated by a period (StructureName.FieldLabel).

Summary

It should be obvious that there are many benefits to upgrading to the ABC
templates. Their object-based foundation will certainly create a more
efficient application, and the additional features of ABC should eliminate a
good majority of the hand-coded embeds that were required with legacy
templates.

CHAPTER 3 CONVERSION TOOLS 21

3 - CONVERSION TOOLS

Tools to Port Legacy Applications to ABC
For applications with embedded source code, TopSpeed provides the
following tools to help you get them up and running with the ABC
templates:

Application Converter

A porting utility exists to help you move your legacy applications to the ABC
Template chain. This tool automates the most common porting tasks. In
addition, when you use the converter in Manual mode, you can learn the new
coding techniques used in the ABC Templates.

To access this special utility, choose File Convert ➤ Application... from the
Application Generator main menu.

2.0 (Legacy) Templates

The 2.0 Templates that ship with Clarion let you continue to use the classic
templates for immediate, conservative, and indefinite use (CW.TPL and
Wizard.TPL) in your Clarion applications. When you feel ready to enter the
Object Oriented power of the ABC templates, you must have these templates
registered to use the Application Converter.

22 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The ABC Templates are (mostly) Backward Compatible

TopSpeed has made every reasonable effort to maintain full backward
compatibility between the template sets, with a high degree of success. Pure
template generated applications (with no embedded code) are fully
compatible. That is, you can simply convert the application, generate,
compile, and run. Legacy 2.x applications that contain embedded code
may require some additional modification.

The ABC Templates optionally support the Clarion Template embed points.
See Action for Legacy Embeds in the Application Options dialog to
configure the default handling of these Legacy embed points.

To see the Clarion Template Embed Points side by side with their
corresponding ABC Template Embed Points as a default, set Action for
Legacy Embeds to Show all and generate all, then open the Embeditor
(choose Edit ➤ Source).

You can easily differentiate between legacy and ABC embed points by
viewing the embed points general description:

Application Conversion

If you have Legacy applications, and you want to convert them to the
ABC templates, one must run them through the conversion process.

The converter is a tool, shipped with Clarion. The entire source code is
included as well. This is so that if you have some 3rd party templates, special
code that you have used, one can simply add the rules of conversion to the
source.

Note: The source code for the Application Converter is located in
the ..\ConvSrc sub folder.

To start the conversion, simply select it off of the File menu. You will
see an opening splash window describing the procedure. Just click on
Next. You now see this window:

CHAPTER 3 CONVERSION TOOLS 23

Source and Destination

While you can specify a legacy application file, you may also select a legacy
TXA file too. You may also specify either an Application(APP) or
Application Text (TXA) for a destination. The converter defaults to the
first 7 characters of the old application plus the number 5 to give it a
unique name.

Tip: The Application Converter assumes that your source and
destination folders will be the same. If you wish to create the
destination application in a different folder, make sure to copy
the active dictionary also to that folder.

Conversion Options

There are two buttons on the next window. These buttons simply direct you
to which set of conversion rules you are applying to your application.

Press the Clarion 4 Betas button to access the Clarion 4 Beta to current ABC
conversion rules.

Typically, you will need to use the 2003 application button.

Press the Clarion 2.0 Application button to configure the Clarion 2.00x to
Clarion ABC conversion rules. Choosing this option displays the
following window:

24 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Before proceeding, it is important to note several issues:

• Although we have made every effort to insure a smooth
conversion, please BACK UP all applications and
dictionaries before starting the conversion process. Your
conversion project should be stored in a separate folder from
your actual legacy applications.

• Your legacy apps are not modified by the Application
Converter. (i.e., After converting a CW2.003 application,
you can still load the CW2.003 application back into the
CW2.003 environment.)

• The Application Converter was designed for applications
created in Clarion versions 2.x and higher. If you are
migrating a CW 1.0 or 1.5 application, you need to first
upgrade the application to version CW2.X before
proceeding. In most cases, this is simply loading (and
saving) the older application into the upgraded environment.

Conversion Rules

All of the defaults shown above are set to “manual”, meaning:

• You can watch the code being converted.

• The converter will stop when it encounters certain pieces of
source code.

• You will be presented with several options as to how you
would like to convert certain sections of source code.

Tip: If you right-click any of the drop down lists, you will be
presented with a menu that will apply to all drop-down lists
on this window. The options for each list are None, Manual
and Automatic . The pop up menu has the same options,
except for they apply to All options here.

• None means that you will ignore any conversion issues for
this section, in other words, skip it.

• Manual means that you will decide to accept, change or
reject the converter’s suggestions.

CHAPTER 3 CONVERSION TOOLS 25

• Automatic means that you will accept the converters
recommendation and not to bother you about it.

It is suggested that you use Manual for most issues. The only exception
may be the Change Tpl Chain option. In this case you may want to
change this to Automatic, as the converter knows all the old template
symbols and what the new ones are.

Press the OK button when you are ready to proceed or press the “X” button
in the upper right corner of the window to quit or cancel conversion.

If you pressed OK, you have a final confirmation window that is displayed:

Press the Proceed button to begin the conversion process.

During Conversion

Once the conversion process starts, the converter will pass through each
section. If the section is set to manual mode, you are asked to accept,
change, or ignore certain issues that it finds. Here is a typical response:

26 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

This screen has notified us that there are certain locally defined
variables used in the legacy templates that are no longer required by the
ABC template set.

The buttons at the bottom are options on how to handle this line of code.
The default is to apply the suggestions. However, if the new code is close to
what you want, but the converter does not quite have it right, you can double
click on the highlighted line and type in the correct code. This is handy if
you have your own templates and the conversion rule differences are not that
great. Also, since the converter does not make any assumptions it cannot
100% rely on, the suggestion may not be applicable to what you need.

Several options are available here:

All
Check this box to apply a buttons action to all the proposed
changes for this rule. Clear the box to dispose of each proposed
change individually.

Assertion
The proposed (red) code replaces the original code in the new
application. The converter inserts a runtime marker
(ASSERT(False)) before the new code so the program offers to
GPF prior to executing the new code.

UnComp(UnCompile)
The proposed (red) code replaces the original code in the
new application. The converter inserts a compile time marker
(***) before the new code so the compiler issues a message
locating/identifying the new code, and so the program will
not successfully compile.

Omit
The proposed (red) code replaces the original code in the
new application. The converter inserts an OMIT statement
and terminator around the new code so it is neither compiled
nor executed.

Apply
The proposed (red) code replaces the original code in the new
application.

Ignore
The original code remains in place in the new application.

Abort
Press this button to halt and cancel the conversion process.

CHAPTER 3 CONVERSION TOOLS 27

Tip: As an aid to learning the conversion tool, try converting one of the
example applications first. Also, you may also use a TXA
instead of the APP file on a live application. Even if you get a
few lines wrong, it will not hamper your active application.

Conversion Hints and Messages

During the conversion process, you may be presented with special hints
that are incorporated into the Application Converter source:

The hint shown in the window above is alerting you to consider the
RETURN statement located in certain embed points. At this time, you
should examine the Language Reference manual to review the RETURN
statements’ modifications and samples. Once you have reviewed any
proposed changes, you can then decide to remove, resolve or reject (ignore)
the suggested hint.

After conversion, when your new application is successfully converted and
loaded into the Application Generator environment, begin to compile the
application.

At any time during the compile process, you may encounter one or more of
the following errors:

28 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Missing %FormulaInstance
This is actually a bug inherited from CW2.003 applications. When you
generate an application that contains formulas, the Application
Generator issues a message something like “Missing %FormulaInstance.” To
correct this problem, simply go to each formula, open it and reselect the
formula class, then save the application.

Removed Embed Points
Some embed points have been removed because they are redundant. Mostly
these were either hidden or marked for Internal Use Only. Where code exists
inside a removed embed point, that code is preserved in an OMITted
“Orphaned Code Section” at the end of the procedure. You can cut and paste
the code as needed to appropriate embed points.

GETINI and PUTINI Calls
Calls to these runtime library functions should be redirected to the globally
instantiated INIMgr object where appropriate.

POPUP Calls

Popups can usually be more efficiently handled using the PopupManager
Class and/or associated code template. The PopupManager class will mimic
buttons and/or post events to nominated controls without additional coding.
A lot of popup related embed code can usually be removed.

Other Issues

PARENT is now a reserved word. Variables and fields cannot use
PARENT as a label.

Dimensioned groups used to have elements accessed by placing the index on
the member field. Although this is still supported for this version, code
should be ported to the new syntax that puts the index on the group label, for
example:

MyGroup[idx].SomeField

Orphaned Embed Points

The ABC Templates include a few embed points whose names begin
with three asterisks (***). For example, the “***After opening VIEW”
embed point in a Browse procedure. These embed points are provided
for backward compatibility only. Any code embedded at these points is
generated, but is not compiled because there is no meaningful
corresponding point in the ABC Template code. This preserves any
code you embedded here with prior versions of Clarion so you can cut
and paste the code to an appropriate new embed point.

CHAPTER 3 CONVERSION TOOLS 29

Making Your Own Rules

The following section is adapted from an article originally written by
Mike Hanson, who graciously allowed us to revise and reprint. - Editors

Overview

As prior versions of Clarion were released, we were often left feeling
that our old applications were abandoned. There was never a "suitable"
upgrade path: If we wanted our applications migrated to the new
version, in most cases we had to rewrite them.

TopSpeed has finally broken this trend with the Application Conversion
Wizard. It scans through your application file and makes appropriate
changes to accommodate the new platform. It handles a wide variety of
issues, from changing the template chain to adding a ProgressWindow
to Reports.

Some Template Housekeeping

There's one problem, though. If you write your own custom templates,
you would probably like to convert them too. If your templates are fully
described by the PROMPTs, the biggest need is to change the template
chain to match the ABC compatible templates. (e.g., if the old template
chain was "MikeHanson", the new chain is "MikeHansonABC".)

Prior to writing conversion rules, the first step is to convert the template
itself. This may involve changing file access statements, (Example:
#INSERT(%GroupName(Clarion)) to #INSERT(%GroupName(ABC)),
and other assorted modifications.

However, template conversion is not the focus of this section. We are
more concerned about converting the application after the template has
been updated.

The Application Converter performs its magic by exporting the old .APP
file to a .TXA (the application’s text based representation), modifying
that .TXA, then importing it into a new .APP file. If we had to change
the template’s chains ourselves, we might use a similar process. One
solution would be to perform a manual search and replace of the chain
name in the TXA file. A more preferable option is to create an automatic
conversion facility.

30 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Creating a New Rule DLL

The entire source for the Application Converter is located in in the
\CONVSRC sub folder of Clarion 5. The main engine is contained in
CNVENG.PR, CNVENG.CLW, CNVENG.INC and CNVENG.TRN.
This source has been used to create C5CNVENG.DLL, which is the
foundation for the rest of the conversion modules.

There are two conversion rule sets supplied with C5. The first,
CNVRULES, is responsible for converting regular APPs from CW 2.003
to Clarion 5. The second, CNVBETA, is used to convert your
applications from interim beta versions of Clarion 4. We'll be copying
bits and pieces from both of these rule sets to achieve our goals.

A first look at the conversion source seems difficult to understand.
However, its a fairly straightforward process to create your own rules.
Just perform the following steps, and you're there. (The example shown
is used for both the BoxSoft SuperTemplates and Mike Hanson’s public
domain offerings)

Step 1 – Make C5CNVENG.LIB

TopSpeed does not include the library (LIB) file necessary for you to
link to C5CNVENG.DLL. However, you can use LIBMAKER.EXE
(supplied with Clarion 5, and located in the \BIN folder) to create
C5CNVENG.LIB. Copy the library file into the \LIB folder of Clarion
5.

Step 2 – Create Your Export (EXP) file

Ultimately, we are trying to create our own dynamic linked library
(DLL) that Clarion can use during the conversion process. When
creating a DLL, the linker must know what elements to make visible to
the outside world. It gets these instructions from an EXP, or export file.
When we create applications with the Application Generator, it
automatically creates the EXP file for us. In this case, we'll have to do it
ourselves.

This is really quite simple. Copy CNVBETA.EXP to STAB_CNV.EXP
(the designated name of our DLL), then edit the EXP file as necessary.

CHAPTER 3 CONVERSION TOOLS 31

In our example, we need to edit the first line only. Your new export file
should look something like this:

LIBRARY stab_cnv
CODE MOVEABLE DISCARDABLE PRELOAD
DATA MOVEABLE SINGLE PRELOAD
HEAPSIZE 1024
STACKSIZE 1024
EXETYPE WINDOWS
SEGMENTS
ENTERCODE MOVEABLE DISCARDABLE PRELOAD
EXPORTS
InitializeDLL @?
;
;

Step 3 – Create the Project File

The TopSpeed development center uses the .PR extension for their
project files. Copy either CNVRULES.PR or CNVBETA.PR and rename
it to use the .PRJ extension. Make a few modifications with any text
editor. The resulting STAB_CNV.PRJ should look like this:

-- TopSpeed Converter Rules
#noedit
#system win
#model clarion dll
#pragma define(maincode=>off)
#pragma debug(vid=>full)
#compile "stab_cnv.clw"
#pragma link("C5cnveng.lib")
#link "stab_cnv.dll"
#run copyconv.bat

The only other change needed is to add the #run command. This
executes a batch file to copy STAB_CNV.DLL to the BIN directory.

Step 4 – Create your Source File

A good place to start for this is the CNVBETA.CLW, because it's much
smaller than CNVRULES.CLW. There are a number of sections that
you'll have to deal with.

MEMBER()
INCLUDE('CNVENG.INC')
MAP
 InitializeDLL,NAME('InitializeDLL')
END
OwnerName EQUATE('BoxSoft SuperTemplates')

The MEMBER() statement (instead of PROGRAM) tells the system that
we don't have a "Main" program module. This corresponds to the
#pragma define(maincode=>off) in the project file.

32 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

CNVENG.INC contains the class declarations for the conversion
engine.

InitializeDLL is the only routine to be exported as a callable procedure.
This is a hook for C5CONV.EXE to call into the DLL.

OwnerName is the selected name for the conversion rule set. It will be
displayed on a new button in the conversion wizard.

The next step is to continue with the custom class declarations:

ChangeSuperTplClass CLASS(RuleClass)
Construct PROCEDURE
TakeSection FUNCTION(SectionClass SectionMgr |

,InfoTextClass Info |
 ,STRING SectionHeader) |
 ,BYTE,VIRTUAL

END

ChangeSuperProcCall CLASS(RuleCLass)
Construct PROCEDURE
TakeSection FUNCTION(SectionClass SectionMgr |
 ,InfoTextClass Info |
 ,STRING SectionHeader) |
 ,BYTE,VIRTUAL

END

There are two rules within our rule set. Each rule is responsible for
performing one task. In our case, ChangeSuperTplClass is responsible
for changing all of the template chains, and ChangeSuperProcCall is
responsible for converting some procedure calls that have changed from
the old templates.

All of your Rule Class declarations must contain at least the two
methods shown. You can add extra properties and methods of your own,
if required.

After our class definitions, we can define the InitializeDLL procedure:

InitializeDLL PROCEDURE
 CODE

This is the empty hook procedure defined in our map.

ChangeSuperTplClass.Construct PROCEDURE
 CODE
 SELF.Register(100,OwnerName,'Change SuperTemplate Chains'|
 ,'&Change Tpl Chain:','[COMMON][ADDITION][PROMPTS]')
!-----
ChangeSuperProcCall.Construct PROCEDURE
 CODE
 SELF.Register(230,OwnerName,'Change Procedure Calls' |
,'&Procedure Calls:','[SOURCE]')

These two Construct methods (SELF.Register) define the priority, owner,
description, prompt, and applicable template sections for each rule.

CHAPTER 3 CONVERSION TOOLS 33

The priority parameter controls the order in which the rules are applied.

Tip: The best way to determine an appropriate priority is to look at
existing conversion rules that do similar things.

The owner parameter ensures that the rules are grouped together in the
conversion wizard.

The description parameter is used for display in various areas of the
conversion wizard.

The prompt parameter controls the prompt within the group of rules.
You should try to keep the highlighted letter unique for each rule in the
group.

The sections parameter tells the conversion engine which template
sections your rule needs to process. There are a number of benefits to
this. The conversion process is faster, because each rule applies only to
its appropriate sections. In addition, the rules can be simplified to handle
the syntax found only within the specified sections. If you're not sure
which sections to include, examine other rules that do similar things.

34 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

ChangeSuperTplClass.TakeSection FUNCTION(SectionClass SectionMgr|
,InfoTextClass Info,STRING SectionHeader)

cLine CSTRING(MaxLineLen),AUTO
i LONG(1)

StrQ QUEUE
OldS CSTRING(50)
NewS CSTRING(50)
 END

 CODE
 DO BuildStrQ
 SELF.Buttons=Action:Apply
 Info.AddTitle('Template Name Changed: '&SectionHeader&' section')
 LOOP
 SectionMgr.GetLine(i,cLine)
 SELF.Lexer.TakeLine(cLine)
 IF SectionHeader='[COMMON]'
 IF SELF.Lexer.GetToken(1)='FROM'
 DO TryReplace
 END
 ELSIF SectionHeader='[ADDITION]'
 IF SELF.Lexer.GetToken(1)='NAME'
 DO TryReplace
 END
 ELSE
 DO TryReplace
 END
 IF SectionMgr.LineChanged(i,cLine)
 SectionMgr.SetLine(i,cLine)
 END
 i+=1
 WHILE i<=SectionMgr.GetLineCount()
 RETURN Level:Benign
!--------------------------------------
BuildStrQ ROUTINE
 StrQ.OldS = 'SuperSecurity'
 StrQ.NewS = 'SuperSecurityABC'
 ADD(StrQ); ASSERT(~ERRORCODE())
 !
 StrQ.OldS = 'MikeHanson'
 StrQ.NewS = 'MikeHansonABC'
 ADD(StrQ); ASSERT(~ERRORCODE())
 !
 StrQ.OldS = 'MHResize'
 StrQ.NewS = 'MikeHansonABC'
 ADD(StrQ); ASSERT(~ERRORCODE())
 !
 StrQ.OldS = 'SuperOddsAndEnds'
 StrQ.NewS = 'MikeHansonABC'
 ADD(StrQ); ASSERT(~ERRORCODE())

CHAPTER 3 CONVERSION TOOLS 35

!--------------------------------------
TryReplace ROUTINE
 DATA
j BYTE,AUTO
k BYTE,AUTO
TokenStart USHORT,AUTO
TokenEnd USHORT,AUTO
 CODE
 LOOP j = 1 TO RECORDS(StrQ)
 GET(StrQ, j); ASSERT(~ERRORCODE())
 k = SELF.Lexer.FindToken(StrQ.OldS)
 IF k
 TokenStart = SELF.Lexer.GetStartChrPos(k)
 TokenEnd = SELF.Lexer.GetEndChrPos(k)
 cLine = SUB(cLine, 1, TokenStart-1) & StrQ.NewS |
 & cLine[TokenEnd+1 : LEN(cLine)]
 SELF.Lexer.TakeLine(cLine)
 Info.AddLine(StrQ.OldS & ' template changed to ' |
 & StrQ.NewS & ' template', i)
 BREAK
 END
 END

This method is responsible for changing the template chain. It's similar
to Clarion's chain converter, except that it understands multiple template
chains. First, it loads a local queue with old chains and their new
counterparts. Notice that we are amalgamating several of the old public
domain template chains into a single chain.

SELF.Buttons is used to specify which buttons are available when a
potential change is being previewed in manual mode. Because this rule
applies to internal template sections and not source code, some of the
buttons (like UnComp) are not applicable.

Info.AddTitle defines the title describing the type of change being
made. It is displayed in the information box in the bottom left corner of
the modification preview window.

SectionMgr.GetLine requests the next line from the section. Then
SELF.Lexer.TakeLine parses the line into tokens.

At this point, each of the section types is checked for the expected
tokens. If it's the COMMON section, then the template chain name will
be preceded by the word "FROM". If it's the ADDITION section, then
the template chain name will be preceded by the word "NAME". In the
PROMPTS section, it could be almost anywhere. If applicable, we DO
TryReplace to change the template chain name.

If the routine is successful, SectionMgr.SetLine is called to remember
the changes.

36 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The TryReplace routine simply checks each queue entry, looking for
old template chain names. If any are found, the token is replaced with
the new chain name (via string splicing), and the resulting line is passed
back into the Lexer class (one of the built-in converter classes) for re-
parsing. To perform the slicing, our code uses methods from the Lexer
class, including FindToken, GetStartChrPos, and GetEndCharPos. In
addition, a descriptive line is added to explain what's happening.

The TakeSection method for the other rule is quite similar, and you can
always look at the source to see how it works.

Step 5 – Make the DLL

Now that you've got your PRJ, EXP and CLW, it's time to make your
DLL. Load the PRJ and hit the lightning bolt. With any luck, you should
have a new conversion DLL. Don't forget that the DLL needs to be in
the \BIN folder of Clarion 5 for it to work.

Step 6 – Update C5CONV.INI

Finally, you must update the C5CONV.INI file located in the Clarion 5
\BIN folder so that the conversion wizard knows about your new DLL.
Just add another entry to the RuleDLLs section, as follows:

[RuleDLLs]
1=CNVRULES.DLL
2=CNVBETA.DLL
3=STAB_CNV.DLL

Conclusion

Well, that's the basics. Of course, these were very simple conversion
rules. We didn't have to worry about parsing entire commands and
substituting other commands with different parameters. I would think,
however, that these rules would accommodate 99% of people with non-
Clarion templates. For those of you with more complex needs, just
peruse CNVRULES.CLW. It contains a plethora of rules for you to copy
and modify.

CHAPTER 3 CONVERSION TOOLS 37

After Conversion: A little clean up

• Review the following short list of common code constructs
(an explanation of the comments follows the list):

Legacy Clarion 2.00x ABC Clarion Comment

LocalRequest SELF.Request Use SELF in a ThisWindow object
or ThisWindow.Request

LocalResponse SELF.Response Use SELF in a ThisWindow object
or ThisWindow.Response

DO RefreshWindow SELF.Reset(TRUE) or RefreshWindow routine = Reset method
ThisWindow.Reset(TRUE) Use SELF in a ThisWindow object
ForceRefresh=TRUE Now a parameter of ThisWindow.Reset

DO SyncWindow SELF.Update or SyncWindow routine = Update method
ThisWindow.Update Use SELF in a ThisWindow object

DO ProcedureReturn RETURN(Level:Fatal) or
ThisWindow.Kill In procedure ROUTINES to postpone
ReturnValue = Level:Fatal RETURN until method end

CheckOpen(file) Relate:file.Open() CheckOpen = Open method

CLOSE(file) Relate:file.Close() Close method “smarter” than CLOSE

ASCIIBox ASCIIViewControl new control template name

ASCIISearchButton ASCIIViewSearchButton new control template name

DO BRWn::InitializeBrowse SELF.ResetFromView or InitializeBrowse routine =
BRWn.ResetFromView ResetFromView method

DO BRWn::NewSelection SELF.TakeNewSelection() or NewSelection routine =
BRWn.TakeNewSelection() TakeNewSelection method

DO BRWn::AssignButtons Toolbar.SetTarget(SELF.ListControl) AssignButtonsroutine=
Toolbar.SetTargetmethod

DO BRWn::RefreshPage SELF.ResetSort(1) or RefreshPage routine =
BRWn.ResetSort(1) ResetSort method

DO BRWn::GetRecord SELF.UpdateBuffer or GetRecord routine call =
BRWn.UpdateBuffer UpdateBuffer method

DO BRWn::PostNewSelection SELF.PostNewSelection or PostNewSelection routine =
BRWn.PostNewSelection PostNewSelection method

38 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Legacy Clarion 2.00x ABC Clarion Comment

BRWn:: SELF.Q. or Queue:Browse:x available in VIRTUALS
BRWn.Q. as SELF.Q.

NEXT(file) IF Access:file.Next() Next() returns success/failure flag
IF ERRORCODE()…

ADD(file) IF Access:file.Insert() Insert() returns success/failure flag
IF ERRORCODE()…

PUT(file) IF Access:file.Update() Update() returns success/failure flag
IF ERRORCODE()…

GET(file,key) IF Access:file.Fetch(KEY) Fetch() returns success/failure flag
IF ERRORCODE()…

Let’s clear up a few important items at this point:

1. Try to get used to the dot syntax as soon as possible. Besides being an
industry standard, it becomes easier to read and interpret with time.

Any member of any complex structure can be explicitly referenced by
prepending the label of the structure containing the field to the field
label, separated by a period (StructureName.FieldLabel). For example,
for the following CLASS declaration:

MyClass CLASS
MyProc PROCEDURE

END

you would call the MyProc PROCEDURE(method) as:

CODE
MyClass.MyProc

2. Notice the use of SELF in many areas. SELF allows the methods to
generically reference the data members and methods of the currently
executing instance of the CLASS, without regard to how it was derived.
Start using SELF in your own embed points for this reason.

CHAPTER 3 CONVERSION TOOLS 39

Mapping Legacy Embeds to the ABC equivalent

NOTE: Legacy embeds marked with an asterisk have special notes at the
end of the embed table.

Old Legacy Name New ABC Embed Priority

***After Opening View NO DIRECT REPLACEMENT

***After Turning QuickScan OFF NO DIRECT REPLACEMENT

***After Turning QuickScan ON NO DIRECT REPLACEMENT

***Before Opening VIEW NO DIRECT REPLACEMENT

***Before turning QuickScan OFF NO DIRECT REPLACEMENT

***Before turning QuickScan ON NO DIRECT REPLACEMENT

Accept Loop, After CASE FIELD()
Handling

Window Manager - Take Event
PROCEDURE(),BYTE

2500

Accept Loop, After TakeEvent
Window Manager - Take Event
PROCEDURE(),BYTE

2500

Accept Loop, Before CASE FIELD()
handling

Window Manager - TakeFieldEvent
PROCEDURE(),BYTE

2500

Accept Loop, Before TakeEvent
Window Manager - Take Event
PROCEDURE(),BYTE

2500

Activity for each record
Process Manager - TakeRecord
PROCEDURE(),BYTE

2500

After Browse Total Loop
Browser - ResetFromView
PROCEDURE()

1000

After Closing the Window
WindowManager - Kill
PROCEDURE(),BYTE

5100

After Lookups
Process Manager - TakeRecord
PROCEDURE(),BYTE

1000

After Opening Progress Window
WindowManager - Init
PROCEDURE(),BYTE

4900

After Opening Report
WindowManager - OpenReport
PROCEDURE(),BYTE

7500

After Opening the Window
WindowManager - Init
PROCEDURE(),BYTE

4900

After Printing Detail Section
Process Manager - TakeRecord
PROCEDURE(),BYTE

1000

After Processing the Window
WindowManager - Ask
PROCEDURE()

1000

40 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Old Legacy Name New ABC Embed Priority

After Refresh Window for Browse Box
Browser - ResetSort PROCEDURE
(BYTE,Force),BYTE

2500

After turning QuickScan On
WindowManager - Init
PROCEDURE(),BYTE

8500

After Window Runtime Translation
WindowManager Open
PROCEDURE()

1000

After calling DOSFileLookup.Ask Method NO DIRECT REPLACEMENT

After first record retrieval
WindowManager Next
PROCEDURE(),BYTE

2500

After initializing resizer
WindowManager - Init
PROCEDURE(),BYTE

8125

After range and filter check
Browser - ValidateRecord
PROCEDURE(),BYTE

5100

Before Browse Total Loop
Browser - ResetFromView
PROCEDURE()

1000

Before Closing Report
WindowManager - AskPreview
PROCEDURE()

2500

Before Closing the Window
WindowManager - Kill
PROCEDURE(),BYTE

5100

Before Lookups
Process Manager - TakeRecord
PROCEDURE(),BYTE

1000

Before Opening Progress Window
WindowManager - Init
PROCEDURE(),BYTE

4900

Before Opening the Window
WindowManager - Init
PROCEDURE(),BYTE

4900

Before Print Preview
WindowManager - AskPreview
PROCEDURE()

2500

Before Printing Detail Section
Process Manager - TakeRecord
PROCEDURE(),BYTE

1000

Before Refresh Window for Browse Box
Browser - ResetSort PROCEDURE
(BYTE,Force),BYTE

2500

Before Resizing Window From INI file
WindowManager - Init
PROCEDURE(),BYTE

4900

Before SET() issued
WindowManager - Open
PROCEDURE()

2500

Before Turning QuickScan On
WindowManager - Init
PROCEDURE(),BYTE

8500

CHAPTER 3 CONVERSION TOOLS 41

Old Legacy Name New ABC Embed Priority

Before Window Runtime Translation
WindowManager - Open
PROCEDURE()

1000

Before calling DOSFileLookup.Ask Method NO DIRECT REPLACEMENT

Before first record retrieval
WindowManager - Next
PROCEDURE(),BYTE

2500

Before subsequent record retrieval
ProcessManager - TakeRecord
PROCEDURE(),BYTE

2500

Beginning of Procedure, After Opening
Files

WindowManager - Init
PROCEDURE(),BYTE

4900

Beginning of Procedure, Before Opening
Files

WindowManager - Init
PROCEDURE(),BYTE

4900

Browse Box, before calling the update
procedure

NO DIRECT REPLACEMENT

Browse Box, process selected record Browser - TakeEvent PROCEDURE() 4000

Browse Box, returning from the update
procedure

Browser - ResetFromAsk PROCEDURE
(*BYTE Request , *BYTE Response)

4000

Browse Initialization
WindowManager - Init
PROCEDURE(),BYTE

7750

Browse Preparation, Request Normal
Operation

WindowManager - Init
PROCEDURE(),BYTE

7750

Browse Preparation, Request to Select
Record

WindowManager - Init
PROCEDURE(),BYTE

7750

Browse Total Loop
Browser - ResetFromView
PROCEDURE()

1000

Browser, After Change
Browser - ResetFromAsk PROCEDURE
(*BYTE Request , *BYTE Response)

4000

Browser, After Delete
Browser - ResetFromAsk PROCEDURE
(*BYTE Request , *BYTE Response)

4000

Browser, After Insert
Browser - ResetFromAsk PROCEDURE
(*BYTE Request , *BYTE Response)

4000

Browser, Before Change NO DIRECT REPLACEMENT

Browser, Before Delete NO DIRECT REPLACEMENT

Browser, Before Insert NO DIRECT REPLACEMENT

42 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Old Legacy Name New ABC Embed Priority

Browser, Double Click Handler*
Browser - TakeKey PROCEDURE(),
BYTE

2500

Browser, End of FillRecord VIRTUAL for
FillBackward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, End of FillRecord VIRTUAL for
FillForward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, End of FillRecord VIRTUAL,
reading backward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, Format an element of the queue
Browser - SetQueueRecord
PROCEDURE()

2500

Browser, Start of Fetch VIRTUAL for
FillForward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, Start of Fetch VIRTUAL, reading
forward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, Start of FillRecord VIRTUAL for
FillBackward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, Start of FillRecord VIRTUAL,
reading forward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

Browser, TakeKey inside CASE
KEYCODE()

Browser - TakeKey PROCEDURE(),
BYTE

2500

Browser, Validate Record: Range Checking
Browser - ValidateRecord
PROCEDURE(), BYTE

5100

Browser, no records found*
Browser - ResetQueue
PROCEDURE(BYTE ResetMode)

6000

Browser, records found
Browser - ResetQueue
PROCEDURE(BYTE ResetMode)

6000

Browser,Start of FillRecord VIRTUAL,
reading backward

Browser - Fetch PROCEDURE
(BYTE Direction)

2500

CASE EVENT() structure, after generated
code

WindowManager - TakeWindowEvent
PROCEDURE(),BYTE

2500

CASE EVENT() structure, before generated
code

WindowManager - TakeWindowEvent
PROCEDURE(),BYTE

2500

CASE FIELD() structure, after generated
code

WindowManager - TakeFieldEvent
PROCEDURE(),BYTE

2500

CASE FIELD() structure, before generated
code

WindowManager - TakeFieldEvent
PROCEDURE(),BYTE

2500

CHAPTER 3 CONVERSION TOOLS 43

Old Legacy Name New ABC Embed Priority

Control Event Handling, after generated
code

NO DIRECT REPLACEMENT

Control Event Handling, before generated
code

NO DIRECT REPLACEMENT

Control Handling, after event handling NO DIRECT REPLACEMENT

Control Handling, before event handling NO DIRECT REPLACEMENT

Data Section, After Report Declaration NO DIRECT REPLACEMENT

Data Section, After Window Declaration NO DIRECT REPLACEMENT

Data Section, Before Report Declaration NO DIRECT REPLACEMENT

Data Section, Before Window Declaration NO DIRECT REPLACEMENT

ELSE Clause of CASE ACCEPTED()
WindowManager - TakeAccepted
PROCEDURE(),BYTE

2500

End of Format an element of the browse
queue

Browser - SetQueueRecord
PROCEDURE()

2500

End of Procedure
WindowManager - Kill
PROCEDURE(),BYTE

5100

End of Procedure, After Closing Files
WindowManager - Kill
PROCEDURE(),BYTE

5100

End of Procedure, Before Closing Files
WindowManager - Kill
PROCEDURE(),BYTE

5100

Error checking after record Action
ProcessManager -TakeRecord
PROCEDURE(),BYTE

2500

FileDrop, End of Format an Element of the
Queue

FileDrop - SetQueueRecord
PROCEDURE()

2500

FileDrop, Format an Element of the Queue
FileDrop - SetQueueRecord
PROCEDURE()

2500

FileDropCombo, After calling update
procedure

FileDropCombo - Ask PROCEDURE(),
BYTE

2500

FileDropCombo, Before calling update
procedure

FileDropCombo - Ask PROCEDURE(),
BYTE

2500

44 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Old Legacy Name New ABC Embed Priority

FileDropCombo, End of Format an Element
of the Queue

FileDropCombo - SetQueueRecord
PROCEDURE()

2500

FileDropCombo, Format an Element of the
Queue

FileDropCombo - SetQueueRecord
PROCEDURE()

2500

Initialize the Procedure
WindowManager - Init
PROCEDURE(),BYTE

4900

Other Control Event Handling NO DIRECT REPLACEMENT

Other Window Event Handling
WindowManager - TakeWindowEvent
PROCEDURE(),BYTE

2500

Preparing Window Alerts
WindowManager - Init
PROCEDURE(),BYTE

4900

Preparing to Process the Window WindowManager - Ask PROCEDURE() 1000

Prime record fields on Insert
WindowManager -PrimeFields
PROCEDURE()

2500

Procedure Setup
WindowManager - Init
PROCEDURE(),BYTE

4900

Record Priming NO DIRECT REPLACEMENT

Refresh Window routine, after lookups
WindowManager - Reset
PROCEDURE(BYTE Force = 0)

1000

Refresh Window routine, before DISPLAY()
WindowManager - Reset
PROCEDURE(BYTE Force = 0)

1000

Refresh Window routine, before lookups
WindowManager - Reset
PROCEDURE(BYTE Force = 0)

1000

Set resize strategy
Resizer -'Init PROCEDURE'(BYTE
AppStrategy=AppStrategy...

7000

Setup control resize strategies
Resizer -'Init PROCEDURE'(BYTE
AppStrategy=AppStrategy...

7000

Sync Record routine, after lookups
WindowManager - Update
PROCEDURE()

7500

Sync Record routine, before lookups
WindowManager - Update
PROCEDURE()

7500

CHAPTER 3 CONVERSION TOOLS 45

Old Legacy Name New ABC Embed Priority

Upon field validation failure NO DIRECT REPLACEMENT

Validate Record: Filter Checking
Browser - ValidateRecord
PROCEDURE(), BYTE

5100

When completed, before writing to disk
WindowManager - TakeCompleted
PROCEDURE(),BYTE

2500

When the report is cancelled
WindowManager - SetResponse
PROCEDURE(BYTE Response)

2500

Window Event Handling - After Rejected
WindowManager - TakeRejected
PROCEDURE(), BYTE

2500

Window Event Handling - Before Rejected
WindowManager - TakeRejected
PROCEDURE(), BYTE

2500

Window Event Handling - after generated
code

WindowManager - TakeWindowEvent
PROCEDURE(), BYTE

2500

Window Event: Open Window, after setting
up for read

WindowManager - Next
PROCEDURE(), BYTE

2500

Window Event: Open Window, before
setting up for reading

WindowManager - Open
PROCEDURE()

2500

Window Initialization Code
WindowManager - Open
PROCEDURE()

1000

◆ With the legacy Browser, Double Click Handler embed, use the
following translation structure:

IF RECORDS(SELF.ListQueue) AND KEYCODE() = MouseLeft2
!Place your code here (you must write the surrounding IF structure, too)
END

◆ A similar translation is necessary with the Browser, no records
found legacy embed:

IF NOT RECORDS(SELF.ListQueue)
!Place your code here (you must write the surrounding IF structure, too)
END

46 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 47

4 - THE ABC DEVELOPMENT ENVIRONMENT

This chapter is divided into two primary sections.

The Abstract View discusses the shift in paradigm for the legacy (Clarion)
programmer to the ABC techniques.

The Concrete View examines specific parts of the Clarion Integrated
Development Environment that are important to anyone who uses the ABC
templates. Information about the derivation of objects, and use of the
embeds and Embeditor are discussed here.

The Abstract View
Before we dig into the specifics of Clarion’s Application Builder Classes
(ABCs) and the specific development environment support, let’s take a
moment to reintroduce the theory and vocabulary of Object Oriented
Programming (OOP). The ABCs are object-based classes of code that have
been designed primarily, but not exclusively, for use by data-centric
applications.

The primary goal of this handbook is to get you comfortable using Clarion
Objects. The methodology will be to discuss the theory in general terms, and
follow that with a discussion of the specifics of Clarion Objects.

48 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Terminology Review

What is an object?

An object is a physical entity that accomplishes a specific task at run-time.
An object exists because there is a bit of code that defines it, and another bit
of code that calls it into existence. An object does a specific job, like
managing a Window, or displaying a list of database records. An object
contains data variables, called PROPERTIES, which contain specific
information about how the object behaves and appears. Objects also contain
code-structures, called METHODS, which perform functions to and for the
object. Objects are also customizable through a methodology called
INHERITANCE.

Class

A class is a programming language construct that defines the properties and
methods that are required to create a particular object.

Object

An object is a set of properties and methods created at run-time from a class
definition. This process is called instantiation. In other words, an object is an
instance of a class. Every object has its own set of properties. However all
objects instantiated from the same class share the same set of methods.

Property

A data element defined in a class is called a property. Properties typically
describe the state, appearance, or functionality of their object.

Methods

Procedures or functions defined in a class are called methods. Methods
typically supply required behavior for their object such as, Print or Close.

Inheritance

A class can be derived from another class. Such a class is called a derived
class and the class it is derived from is called its parent class. A derived class
inherits all properties and methods from its parent class. A derived class may
also contain properties and methods which are not declared in its parent
class. A class with no parent is called a base class.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 49

Clarion Objects

Clarion objects are based on the Application Builder Classes (ABCs). They
contain methods and properties, and rely heavily on derivation to achieve
their high degree of power and flexibility.

Classes

The ABCs are a set of object oriented classes that are optimized for creating
data-centric, Windows-based applications. They have built in functionality to
handle windows, files, relationships, errors, file browsing, query-by-
example, and many other data-centric functions necessary for robust
business applications.

Objects

Clarion objects are, of course, instantiations of ABCs, and they are expertly
and extensively used by the ABC Templates. Clarion developers have relied
on templates for years to provide pretested code for their applications. The
ABC Templates instantiate Clarion objects and the supporting code to make
fully functioning object-oriented applications.

Properties

The ABCs utilize properties as both appearance and functionality
determiners. A property contains a value that is evaluated to determine either
how the object functions, or how the object appears on a screen or report.

Methods

The ABCs utilize methods to accomplish all of the functions of an object.
The methods of a Clarion object are actually small procedures and therefore
have their own Data and Code sections like all other procedures in the
Clarion language. They also have the same autonomy as any other
procedure.

Inheritance

The ABCs and the ABC Templates extensively utilize inheritance to enhance
and extend functionality. Some ABCs have been designed to exclusively be
parent, or abstract, classes. These classes are never instantiated as objects
themselves, but the classes that are derived from them are instantiated as
objects. The ABC Templates derive new methods so they can provide the
specific functionality required by a particular method. For instance, there is
no way for the designer of the ABCs to know which data file a developer will
use, so the templates contain code that overrides the initialization method for
a browse object to provide the specific file the developer wants to use.

50 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Programming with Objects in Clarion
The power of Clarion lies not only in the ABCs and the Clarion language,
but also in the templates that Clarion provides for use with its integrated
development environment (IDE). Application, procedure, extension, control,
and code templates can be used to create powerful applications quickly.
Customizing an application beyond the template-generated code is usually
necessary, and the IDE allows for this by providing an interface with the
template generated code called embed points. These are the two steps that
developers take to create applications in Clarion; they use the templates to do
the majority of the work automatically, and then customize by embedding
specific Clarion code.

Step 1 - How the ABC Templates generate Clarion Objects

An application file (.APP) contains all of the project settings, global
variables, procedures and references to the templates used to create those
procedures. When a “make” is done by the developer, Clarion grabs the code
contained in the templates and writes it into a source code file for
compilation into executable code. The ABC Templates contain code that
instantiates and customizes the ABCs. This is the exact same template
technology used by the Legacy templates. The big difference being that the
Legacy templates were procedural, and therefore wrote much more code into
source files without the power and flexibility of Objects.

Step 2 - How Template Code is Customized when using the ABC Templates

Since the ABC Templates are instantiating objects, it stands to reason that if
you want to modify the template generated code, the best place to embed
custom code is in an object. Objects perform their functionality via methods,
and that is one of the places to embed source code. The other place to embed
source code is on an Event (Window or Control) which is the same as it was
in previous versions of Clarion for Windows.

What is an Embed Point?

An embed point is a predefined “customization” point within the code that is
generated by the templates. The code placed within the embed point is
stored in the APP file for incorporation whenever the source code is
generated. Embed points are provided at every window and control event, as
well as predefined points inside the template generated code.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 51

Legacy Embed Points

Legacy template authors created embed points inside their code, usually
creating an embed point at every logical break in the procedural code. The
labels used for these embed points were usually straightforward and easily
understandable. This methodology put the template author in control of
where the developer was able to embed custom code. Fortunately, template
authors provided many embed points for flexibility.

ABC Embed Points

Embed points within the ABC Templates are available at any point in any
object. Custom code can be placed at any point in any method. And because
methods are actually mini-procedures, there is a data section for each
method, so that the need for implicit variables has been greatly reduced.

Legacy Embedding Methodology

When source code needed to be added to an application using the Legacy
Templates, the Embed-Tree was opened in the procedure being worked on
and the developer would read the embed points to find the one that was close
to the point where he needed his code to be placed. Again, this was usually
straightforward because the template author named the individual embed
points.

ABC Embedding Methodology

To find the proper embed point when using the ABC templates, it is
important to know the Clarion Objects that are being used, and what their
methods accomplish. The Embed Tree for each procedure provides a list of
all the Clarion Objects and their methods. The Application Handbook is the
guide for the Clarion Objects. This manual will also instruct you in the most
used methods for embedding your custom code.

52 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The Concrete View

Source Embeds in the ABC IDE

The ABC templates are flexible and powerful. There are times, despite this
flexibility, when a programmer must change the behavior of the generated
code. This section focuses on what an embed point is, when to use one and
(most important) why.

This section of the chapter focuses on four primary topics:

◆◆◆◆◆ Embed Tree
A discussion of the Embed Tree, contrasting similarities and
differences between legacy and ABC.

◆◆◆◆◆ Embed Editor (The “Embeditor”)
A closer look at this new tool, specifically focusing on the aid it
now gives the legacy-to-ABC user.

◆◆◆◆◆ Derivation
You don’t have to be an expert in OOP to really use it. This
section describes the IDE support for adding your own classes
derived from a base class.

◆◆◆◆◆ Looking at ABC Generated Source
Contrary to what some developers think, ABC code is not a
complete “black box”. This section shows a brief overview of
ABC generated code using a QuickStart exercise.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 53

Embed Tree

Each template procedure has its own embed tree. Access to this tree is
available through two methods:

1. From a procedure properties window, press the Embed button,

or

2. RIGHT-CLICK on any procedure and select Embed from the popup menu.

The tree appears as follows:

Figure 1 – Collapsed embed tree

Priority

Notice, the Priority group on the right side of the window. Its control is
disabled until you add some code.

Priority is defined as the sequence in which your code will be generated
along with or within the template generated code.

The idea of priority is to keep the amount of embed points manageable
without limiting the flexibility that the developer might need. With the
Priority scheme, one has access to literally hundreds of new embed points!
How?

Priority values can range from 1 to 10000, in theory giving the programmer
9999 different entry points. At first, this may seem intimidating. However,
most embeds contain a base parent object (or, parent call) where template
code is generated. This parent object is given a default priority code of
5,000. So the priorities of 1 to 4999 represent code to be executed before the
parent call, while priorities of 5001 to 10000 represent code to be executed
after the parent call.

54 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

In ABC terms, “Parent call” is defined as calling or running the object that
the embed represents. If you assign the same priority as the Parent (5000),
then the embed will appear in random order. This may or may not be
harmless, but if you want to ensure that it does happen in the order you place
it, then use the appropriate priority code.

Selecting a priority now is not an issue. We can use the up and down arrows
to move our source code up or down in relation to the template-generated
code. Appropriate priorities are then automatically set for us.

What does all this mean?

The Embed window provides a more understandable way to communicate
with an application, and we no longer need to worry about priorities directly.
We can simply place our embeds in an appropriate position and the correct
priority level will be set for us.

The legacy method of filled embeds included only programmer-generated
fragments of code with an associated hard coded priority. Template-
generated code did not appear.

The ABC “metaphor” includes programmer-generated fragments plus
template-generated fragments. Movement of programmer-generated code
within these fragments can be done easily with the up and down arrows
rather than setting a priority number. For most of us the ABC metaphor will
be much easier to work with.

To summarize, there are hundreds of embed points available in the simplest
procedure. The difference between the legacy and ABC templates, is that the
developer decides on the specific embed point. In other words, you now
have embed points that are dynamic.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 55

The ABC Embed Standard

A procedure generated by the ABC templates is actually composed of several
“mini” procedures (more accurate, Clarion Object Methods). Each of the
embed points available by default is actually showing the available Data and
Code sections of these procedures. This is different than the legacy
templates, which populate the embed points throughout the code itself.

Click on the Clarion button to view or use the Legacy embed points
when using the ABC template set. All of the legacy embed points become
available. The legacy names can help you find the embed that you need,
although you are really coding in an ABC embed!

There are five primary embed labels that hide and organize the ABC
templates and its associated Clarion objects to any level that you may need to
view.

◆ Local Data
Based on the type of ABC template you are using, this section
offers embed points into the data types and structures that are
necessary for the ABC generated code. Local data is further
divided into Generated Declarations and Other Declarations, so
you can modify the properties of the generated data, or declare
your own data for anything that you need. Priorities (or
positional movement of your embeds) determine if your code
statement is applied before or after the generated structure.

◆ Local Objects
Of all the embed groups discussed here, the Local Objects group
can be the most challenging to the legacy programmer. A simple
ABC Window template contains two local objects (ThisWindow
and Toolbar) which contains a combination of 40 methods.

56 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Some methods are simply created (derived) from a base class
unmodified, and marked in black. Other methods are Virtual,
implying that the objects were derived and modified by the local
object (the ABC templates need this modified method to
generate the proper code), and are marked in green by default.
Finally, protected methods are methods that can only be called
from their defined local object, and are marked in red.

For the legacy programmer, there are tools that we will discuss
and generated source that we will examine in this chapter that
will help you choose the proper method embed point , and if and
when you actually need to override the behavior of a locally
defined object.

In addition, the embed description gives you a lot of clues as to
why you would need to use the embed in the first place.
Examine the following windows:

ThisWindow is the default name of the Local Object created by
the ABC templates. In parentheses, WindowManager is the base
class that ThisWindow was derived from. As a legacy
programmer, if I want to know the details of this object, I would
reference the Application Handbook for all of the properties and
methods defined in the WindowManager class.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 57

The INIT procedure is actually a method of the ThisWindow
object, and common sense descriptions of the embed points’
functions are described here. For example, if I need to perform
some kind of user validation prior to entering the window, one
possible embed point would be Initialize the procedure. If the
validation was dependant on a file, I would use the Open Files
embed. Finally, if the validation required the use of a window
variable, I could use any embed point that followed the Open the
window embed.

We will examine the ABC object code later in this chapter, but
let’s wrap up the other primary embed classifications.

◆ Window Events
Legacy programmers should feel comfortable with this, and the
remaining embed classifications. The Window Events group
controls nine common window events and gives the user the
ability to detect and respond to these events in whatever way that
is necessary.

◆ Control Events
This group is more dynamic than WindowEvents, in that the
amount and type of events available are dependant on the
controls populated in the ABC template procedure. The beauty
of the ABC model is that when you give a control a special
attribute (like Drag and Drop) an event embed point, if
appropriate, is automatically generated for you.

◆ Procedure Routines
The legacy programmer will appreciate that the support of the
ROUTINE paradigm is alive and well in the ABC templates.
Any routine that you have defined is placed into this embed area,
and called with the DO statement elsewhere in your embedded
code.

◆ Local Procedures
In many procedures a simple routine is not appropriate due to the
limited scope of use within the active module. This embed
classification allows the legacy programmer to embed
procedures locally into an ABC template procedure, increasing
its accessibility.

58 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Using the Embeditor

Another utility to help you use and understand the ABC templates and their
associated embed points is integrated into the Clarion IDE and called the
Embeditor. This tool goes a long way to understanding how ABC source is
generated.

To access it, simply RIGHT CLICK on any procedure you wish to see. Then
choose Source from the popup menu. The Module menu item also available on
the popup menu is the actual generated source, so at times it may not be
enabled if you have not yet generated any source. The Embeditor is also
accessible via the Source button found in the Embedded Source window.

Here is a sample of what we see when it is first opened:

The Layout

The gray areas represent generated code by the templates. The white areas
are the actual embeds where you can add your own source. This is very
useful as you can see your code in context with the generated code.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 59

The Embeditor also generates all code that is possible for this procedure.
This is not all the code that is generated.

Another thing to keep in mind is that if you add pre-written code templates,
this will be represented (contained) in the gray areas.

The nice thing about the Embeditor is that the code you add is also seen in
the standard embed tree once you close the Embeditor.

Priorities Revisited

Each embed point also has the default priority number listed above the
embed point (if you have this option in the Setup menu). While priority
numbers were discussed previously, lets examine them once again.

While there is no hard and fast rule about priority numbers, there are some
general guidelines for legacy users as follows:

1.1.1.1.1. Legacy embeds are usually contained between the ranges of 2500 to
7500.

2.2.2.2.2. CASE structures have gaps of about 500 for each level. For example:
#PRIORITY(n)
CASE
OF something
#PRIORITY(n+500)
ELSE
#PRIORITY(n+1000)
END

In real world programming, priorities tend to depend on the complexity of
the procedure. An INIT procedure could be tighter in the numeric gaps, but
most other methods are fairly standard with set priorities.

In summary, do not worry too much about the priority numbering scheme. It
is not a precise science, nor is it meant to be. Usually, close is good enough.

Navigation

If you look towards the top of the Embeditor window you will notice four
buttons.

These buttons, starting from the left are Previous embed, Next Embed,
Previously Filled embed and Next Filled Embed respectively.

60 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Benefits

With its repeated use, and the legacy users’ gradual familiarity with Clarion
objects and the ABC templates, the use of the Embeditor becomes
invaluable. It can assist you in writing better code by allowing a view of
your embed points in context. In simple terms, you write better code by
seeing how it is all coming together. Many times, you can determine in the
Embeditor that embedded code you used to write in legacy applications is no
longer necessary with the ABC templates.

TIP: Examine the example PEOPLE application (located in the
\EXAMPLES\PEOPLE folder) using the Embeditor. It illustrates
that by using a few key embed points with ABC report
templates, you can provide rich features with very little
programming effort. An Embeditor study of this application
will lead to a better understanding of how Clarion objects and
the ABC template embeds can work together.

Derivation - more support through the IDE

Derivation refers to items or things that are taken from other sources and are
therefore not original. Clarion objects are derived from base classes, and the
ABC templates support this process easily. While the templates generate
object names that are very basic and generic, there are times when you may
want to use more descriptive names for your derived objects.

The default for the object name is listed in the Object Name entry. If you do
not like the template default object name, replace it here with your own.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 61

If you do not want to use the default ABC class used by the ABC template
(in the window shown, ProcessClass), then clear this check box. The Use
Application Builder Class becomes enabled, allowing you to pick a new base
class. If there is an include file for the class definition, type in the name
here. This file must be visible either in the current program folder or the
redirection file.

Generally, this technique is used when you (or a third party) have written a
base class that more closely emulates the features and tasks that must be
performed by your application. The ABC templates are (in most cases) good
enough for the great majority, but its nice to know that you have the power to
override the default class behavior at any time thorough the IDE.

If you want to derive a new class method or property, check the Derive check
box. This enables the New Class Methods and New Class Properties buttons. In our
Report Properties window shown, you may also do the same for the
Previewer and Progress class objects.

In the global section of your application, you can also override and/or derive
new classes based on the classes that are pertinent to the application.

When to derive

As stated previously, in the vast majority of application development there is
little need to override and/or derive new classes due in part to the power of
the ABC class library. It is suggested that one use these classes until you
find that a class is not going to produce the code or functionality you need.

A popular use of derivation is in the EditInPlace Manager:

See the Browse Techniques chapter in this handbook for more detail in using
the template-supported edit-in-place configuration.

62 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

How do I find an embed point?

First, do I even need one?

While one tries to get a basic understanding of how the ABC embeds work,
here are a few pointers:

◆ Understand what “derivation” means. Adding an embed is
actually causing the ABC templates to derive a new method or
property. This is a key to understanding how the ABC embeds
really work.

◆ Look at a report (any report will do). Where does the print
statement, PRINT(RPT:Detail), get generated? Ask yourself
why it was placed there. Based on the object name, you can
make some logical conclusions:

Our embed points refer to the TakeRecord method of
ThisReport, which was derived by the ABC templates from the
ProcessClass. We’re telling the report to “take a record”, and
print it.

◆ Before trying to find an embed, try not to use one at all. This
may sound strange, but the ABC templates and classes are quite
functional. There may be a simple switch to turn on that will do
what you are thinking. Test. This has an added benefit of
teaching yourself what is going on under the hood.

◆ Don’t try to be an expert with all ABC templates overnight.
Small “baby steps” in building a procedure will certainly pay off
in the near future.

◆ Let the IDE find your embed! For example, the Formula Editor
will insert an expression into selected embeds based on the type
of Formula Class you designate.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 63

If you are performing a complex filter process, enter a dummy
expression in the Record Filter entry and using the Embeditor to
search for the expression. Once found, the closest embed point
will be revealed!

Other places to “ask the IDE” what embed points are needed are
browse procedures, additional sort orders, conditional colors,
icons, etc. This should take care of about 90% of your embed
requirements!

◆ Use Code templates to reveal the object’s methods. Go to any
embed point and Insert the following code template:

Next, choose the object that you want to affect. From the next
drop list, you will see method calls that apply to only the chosen
object. Based on the name only, make a list of possible
candidates.

Finally, using the on-line Help, lookup the reference for your list
of possible candidates.

◆ The same technique above also applies to ABC properties,
except you would use the SetABCProperty template.

A final step to understanding the ABC templates and the use of embedded
code is to study the default ABC generated code. This is presented in the
following section.

64 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Looking at Generated Source

The key to understanding any template based code generation is to study the
source in its minimal form. From there, any additions can also be gradually
studied and learned, along with the accompanying embed points.

On the following pages, we begin with a QuickStart application, using a
simple file with two fields and a single key. The source code is then
generated.

We begin our study with the main Program module. Legacy template users
should pay special note to the many similarities of the ABC templates, as
well as the differences.

The PROGRAM Module

The PROGRAM module defines global information, and the launch of the
first procedure. The basic structure of a Clarion Object based program is the
same as one that is procedure based. The first two statements are EQUATE
statements which define constant values that the ABC Library requires.
Following those are several INCLUDE statements. The INCLUDE statement
tells the compiler to place the text in the named file into the program at the
exact spot the INCLUDE statement. The ONCE attribute insures that the
contents of this file is included only once, in the event that a duplicate
INCLUDE is entered elsewhere in the application.

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
INCLUDE(‘ABERROR.INC’),ONCE
INCLUDE(‘ABFILE.INC’),ONCE
INCLUDE(‘ABUTIL.INC’),ONCE
INCLUDE(‘ABWINDOW.INC’),ONCE
INCLUDE(‘EQUATES.CLW’),ONCE
INCLUDE(‘ERRORS.CLW’),ONCE
INCLUDE(‘KEYCODES.CLW’),ONCE

The first four INCLUDE files (all starting with “AB” and ending with
“.INC”) contain CLASS definitions for some of the ABC Library classes.
The next three INCLUDE files (all ending with “.CLW”) contain a number
of standard EQUATE statements used by the ABC Template generated code
and ABC Library classes.

MAP
MODULE(‘PHONEBC.CLW’)

DctInit PROCEDURE
DctKill PROCEDURE
END

!— Application Global and Exported Procedure Definitions ——————
MODULE(‘PHONE001.CLW’)

Main PROCEDURE !Clarion 5 Quick Application
END

END

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 65

The MAP structure contains two MODULE structures. The first declares two
procedures DctInit and DctKill that are defined in the PHONEBC.CLW file.
These two procedures are generated for you to properly initialize (and
uninitialize) your data files for use by the ABC Library. The second
MODULE structure simply names the application’s first procedure to call (in
this case, Main).

The PHONES file declaration follows. Nothing new here for the legacy
users:

Phones FILE,DRIVER(‘TOPSPEED’),PRE(PHO),CREATE,BINDABLE,THREAD
KeyName KEY(PHO:Name),DUP,NOCASE
Record RECORD,PRE()
Name STRING(20)
Number STRING(20)

END
END

The next two lines of code are your first OOP statements:

Access:Phones &FileManager
Relate:Phones &RelationManager

The Access:Phones statement declares a reference to a FileManager object,
while the Relate:Phones statement declares a reference to a
RelationManager object. These two references are initialized for you by the
DctInit procedure, and uninitialized for you by the DctKill procedure. These
are very important statements, because they define the manner in which you
will address the data file in your ABC based code.

The next two lines of code declare a GlobalErrors object and an INIMgr
object.

GlobalErrors ErrorClass
INIMgr INIClass

These objects handle all errors and your program’s .INI file (if any),
respectively. These objects are used extensively by the other ABC Library
classes, so must be present (as you will shortly see).

GlobalRequest BYTE(0),THREAD
GlobalResponse BYTE(0),THREAD
VCRRequest LONG(0),THREAD

Following that are three Global variable declarations which the ABC
Templates use to communicate between procedures. Notice that the global
variables all have the THREAD attribute. THREAD is required since the
ABC Templates generate an MDI application by default, which makes it
necessary to have separate copies of global variables for each active thread
(which is what the THREAD attribute does).

66 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The global CODE section only has eight lines of code:

CODE
GlobalErrors.Init
INIMgr.Init(‘Phones.INI’)
DctInit
Main
INIMgr.Update
INIMgr.Kill
DctKill
GlobalErrors.Kill

The first two statements call Init methods (remember, a procedure in a class
is called a method). These are the constructor methods for the GlobalErrors
and INIMgr objects.

You’ll notice that the INIMgr.Init method takes a parameter. In the ABC
Library, all object constructor methods are explicitly called and are named
Init. There are several reasons for this. The Clarion language does support
automatic object constructors (and destructors) and you are perfectly
welcome to use them in any classes you write.

However, automatic constructors cannot receive parameters, and many of the
ABC Library Init methods must receive parameters. Therefore, for
consistency, all ABC object constructor methods are explicitly called and
named Init. This has the added benefit of enhanced code readability, since
you can explicitly see that a constructor is executing, whereas with automatic
constructors you’d have to look at the CLASS declaration to see if there is
one to execute or not.

The DctInit procedure call initializes the Access:Phones and Relate:Phones
reference variables so the template generated code (and any embed code that
you write) can refer to the data file methods using
Access:Phones.Methodname or Relate:Phones.Methodname syntax. This
gives you a consistent way to reference any file in an ABC Template
generated program—each FILE will have corresponding Access: and Relate:
objects.

The call to the Main procedure begins execution of the rest of your program
for your user. Once the user returns from the Main procedure, the INIMgr,
DctKill and GlobalErrors.Kill perform some necessary cleanup operations
before the return to the operating system.

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 67

The Update Module

Let’s examine typical source code that was generated for a simple update
(Form) procedure.

MEMBER(‘Phones.clw’) ! This is a MEMBER module
INCLUDE(‘ABRESIZE.INC’)
INCLUDE(‘ABTOOLBA.INC’)
INCLUDE(‘ABWINDOW.INC’)
MAP
INCLUDE(‘PHONE004.INC’) !Local module procedure declarations

END

The first thing to notice is the MEMBER statement on the first line. This is a
required statement telling the compiler which PROGRAM module this
source file “belongs” to. It also marks the beginning of a Module Data
Section—an area of source code where you can make data declarations
which are visible to any procedure in the same source module, but not
outside that module. For legacy users, this is nothing new.

The three INCLUDE files contain CLASS definitions for some of the ABC
Library classes. Notice that the list of INCLUDE files here is different than
the list at the global level. You only need to INCLUDE the class definitions
that the compiler needs to know about to compile this single source code
module. That’s why the list of INCLUDE files will likely be a bit different
from module to module.

Notice the MAP structure. By default, the ABC Templates generate local
maps for you, that contains INCLUDE statements to bring in the prototypes
of the procedures defined in the module and any procedures called from the
module. This allows for more efficient compilation, because you’ll only get a
global re-compile of your code when you actually change some global data
item, and not just by adding a new procedure to your application. In this
case, there are no other procedures called from this module.

The PROCEDURE statement begins the UpdatePhones procedure (which
also terminates the Module Data Section).

UpdatePhones PROCEDURE !Generated from procedure template - Window
CurrentTab STRING(80)
FilesOpened BYTE
ActionMessage CSTRING(40)
History::PHO:Record LIKE(PHO:RECORD),STATIC

Following the PROCEDURE statement are four declaration statements. The
first two are common to most ABC Template generated procedures. They
provide local flags used internally by the template-generated code. The
ActionMessage and History::PHO:Record declarations are specific to a Form
procedure. They declares a user message and a “save area” for use by the
Field History Key (“ditto” key) functionality provided on the toolbar.

68 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

After a standard WINDOW structure comes the following object
declarations:

ThisWindow CLASS(WindowManager)
Ask PROCEDURE(),VIRTUAL
Init PROCEDURE(),BYTE,PROC,VIRTUAL
Kill PROCEDURE(),BYTE,PROC,VIRTUAL

END
Toolbar ToolbarClass
ToolBarForm ToolbarUpdateClass
Resizer CLASS(WindowResizeClass)
Init PROCEDURE(BYTE AppStrategy=AppStrategy:Resize,BYTE|

SetWindowMinSize=False,BYTE SetWindowMaxSize=False)
 END

The last four are simple object declarations, which create the local objects,
enable the user to use the toolbar, and resize the window at run-time. The
interesting code here is the ThisWindow CLASS declaration. This CLASS
structure declares an object derived from the WindowManager class in which
the Ask, Init, and Kill methods of the parent class (WindowManager) are
overridden locally. These are all VIRTUAL methods, which means that all
the methods inherited from the WindowManager class will be able to call the
overridden methods.

Following that comes all of the executable code in your procedure:

CODE
GlobalResponse = ThisWindow.Run()

That’s right—one single, solitary statement! The call to ThisWindow.Run is
the only executable code in your entire procedure! So, you ask, “Where’s all
the code that provides all the functionality I can obviously see happening
when I run the program?” The answer is, “In the ABC Library!” or, at least
most of it is! The good news is that all the standard code to operate any
procedure is built in to the ABC Library, which makes your application’s
“footprint” very small, since all your procedures share the same set of
common code which has been extensively debugged (and so, is not likely to
introduce any bugs into your programs).

All the functionality that must be explicit to this one single procedure is
generated for you in the overridden methods. In this procedure’s case, there
are only four methods that needed to be overridden. Depending on the
functionality you request in the procedure, the ABC Templates will override
different methods, as needed. You also have embed points available in every
method it is possible to override, so you can easily “force” the templates to
override any method for which you need slightly different functionality by
simply adding your own code into those embed points (using the Embeditor
in the Application Generator).

CHAPTER 4 THE ABC D EVELOPMENT ENVIRONMENT 69

OK, so let’s look at the overridden methods for this procedure.

ThisWindow.Ask PROCEDURE
CODE
CASE SELF.Request
OF InsertRecord
ActionMessage = ‘Adding a Phones Record’

OF ChangeRecord
ActionMessage = ‘Changing a Phones Record’

END
QuickWindow{Prop:Text} = ActionMessage
PARENT.Ask()

The really interesting line of code in the ThisWindow.Ask PROCEDURE is
last. The last statement, PARENT.Ask, calls the parent method that this
method has overridden to execute its standard functionality. The PARENT
keyword is very powerful, because it allows an overridden method in a
derived class to call upon the method it replaces to “do its thing” allowing
the overridden method to incrementally extend the parent method’s
functionality.

ThisWindow.Init PROCEDURE()
ReturnValue BYTE,AUTO
CODE
SELF.Request = GlobalRequest
IF PARENT.Init() THEN RETURN Level:Notify.
SELF.FirstField = ?PHO:Name:Prompt
SELF.VCRRequest &= VCRRequest
SELF.Errors &= GlobalErrors
CLEAR(GlobalRequest)
CLEAR(GlobalResponse)
SELF.AddItem(ToolBar)
SELF.AddUpdateFile(Access:Phones)
SELF.HistoryKey = 734
SELF.AddHistoryFile(PHO:Record,History::PHO:Record)
SELF.AddHistoryField(?PHO:Name,1)
SELF.AddHistoryField(?PHO:Number,2)
SELF.AddItem(?Cancel,RequestCancelled)
Relate:Phones.Open
FilesOpened = True
SELF.Primary &= Relate:Phones
SELF.OkControl = ?OK
IF SELF.PrimeUpdate() THEN RETURN Level:Notify.
OPEN(QuickWindow)
SELF.Opened=True
Resizer.Init(AppStrategy:Surface,Resize:SetMinSize)
SELF.AddItem(Resizer)
Resizer.AutoTransparent=True
ToolBarForm.HelpButton=?Help
SELF.AddItem(ToolbarForm)
SELF.SetAlerts()
RETURN ReturnValue

70 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

There are several interesting lines of code in the ThisWindow.Init
PROCEDURE. This is the ThisWindow object’s constructor method, so all
the code in it performs the initialization tasks specifically required by the
UpdatePhones procedure.

The first statement, SELF.Request = GlobalRequest, retrieves the global
variable’s value and places it in the SELF.Request property. SELF is another
powerful Clarion Object keyword, which always means “the current object”
or “me.” SELF is the object prefix, which allows class methods to be written
generically to refer to whichever object instance of a class is currently
executing.

The second statement calls the PARENT.Init() method (the parent method’s
code to perform all its standard functions) before the rest of the procedure-
specific initialization code executes.

Following that are a number of statements which initialize various necessary
properties. The Relate:Phones.Open statement opens the Phones data file for
processing, and if there were any related child files needed for Referential
Integrity processing in this procedure, it would also open them (there aren’t,
in this case).

ThisWindow.Kill PROCEDURE()
CODE
IF PARENT.Kill() THEN RETURN Level:Notify.
IF FilesOpened
Relate:Phones.Close

END

In addition to calling the PARENT.Kill() method to perform all the standard
closedown functionality (like closing the window), ThisWindow.Kill closes
all the files opened in the procedure, then sets the GlobalResponse variable.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 71

5 - GENERAL APPLICATION TECHNIQUES

Introduction

This chapter focuses on the features of the ABC templates as they apply to
an entire application. Some are provided as an explanation to the Legacy
template user to allow them a smooth transition into using the ABC
template set. Even non Legacy users will find many useful areas of
information to help clarify much of the ABC activity that occurs within an
application.

Other sections in this chapter focus on techniques that can be applied to any
or all ABC template based procedures.

Although there are many techniques to explore in the ABC templates, we
will only focus on those that differ significantly from legacy
implementations.

NOTE: The code demonstrated and shown in the following
examples are available for download at the TopSpeed web
site at the same location (URL) where this document was
downloaded.

Error Handling (The ABC Error Class)

Overview

The ABC templates have incorporated powerful Error Class objects
throughout their design. This gives the developer added confidence and
flexibility when using these templates.

To the legacy user, it is important to note a few key implementation features:

◆ The ABC Error Class uses a more robust way of trapping errors
in an environment where multiple files are accessed. As future
file driver enhancements are implemented, the Error Class
allows for a more flexible and configurable interface.

◆ In legacy programs, a lot of your code was bloated with frequent
error checking conditions (IF TheWorldEnds THEN
GetYourWings, etc.). The ABC Error Class handles exceptions
in a more elegant manner.

72 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

In addition, the ABC Error Class is designed with the following features
in mind:

◆ Clean interaction with the end-user

◆ Perform quick and clean corrective action that is required.

◆ Allow customizing the error screens, messages, and actions
taken.

◆ Uses minimum resources to allow clean operation in a
potentially hostile environment.

 Let’s explore a few common techniques using the ABC Error Class.

Altering the Text of an ABC Error Message

1. Locate the file aberror.trn found in the \LIBSRC folder of Clarion.
This file contains is the data structure that drives the error process.

2. Search for the error text that is closest to the message you want to
replace.
Any words starting with a % will match 1 or more words in the string
you have seen. For example if you want to replace “Fred key file is
invalid. Key must be rebuilt” then the matching one is “%File key file is
invalid. Key must be rebuilt”. All the words other than the ones preceded
by a % may be edited with impunity. The words proceeded by % are
macros, they will be expanded out when the user sees them. The full list
of potentially available macros is in the aberror.clw file before the
SubString procedure definition. You don’t have to use a macro value just
because the existing text does. Next time you compile you application all
the changes will be in place.

Features and benefits:

• One edit applies to all usages in all applications

• No runtime overhead

• No coding

• Particularly suitable for language translations or ‘buzzword’
translations (i.e., replace “file” with “table”). Can also be used
for sheer user friendliness.

Caveats:

• Changes need to be merged with each new TopSpeed release.

• PSTRINGs are limited to 255 characters.

• The title displayed on the window is the line preceding the full
error description. This too can be edited although macros are
presently not available

• Macros are presently case sensitive. This will probably be
changed in a future release.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 73

Altering the Severity of an Error Message

The concept and implementation of this looks very simple, as the line
above the title is the severity level. You can simply edit that to a new
value.

DefaultErrors GROUP
Number USHORT(41)

USHORT(Msg:RebuildKey) !Errorcode
BYTE(Level:Notify) !Severity
PSTRING('Invalid Key') !Title
PSTRING('%File key file is invalid. Key must be rebuilt.') !Message

For example, suppose you wanted ‘key building’ to be done only by the
DBA. You could change the error text (see above) to “Fred key file is invalid,
please call the DBA”, then change the severity level to Level:Fatal (from
Level:Notify). The user will now be dropped out of the program rather than
the keys rebuilding.

However, things aren’t always quite that easy. Going from Notify to Fatal
always works, but the harder ones are the errors that lessen in severity.

A Level:User (which asks a yes/no question) can be softened to a
Level:Benign provided you want the default response to be ‘yes’. For
example, to make cancels happen without a confirm (globally) change the
level of Msg:ConfirmCancel from Level:User to Level:Benign.

In other cases, the Level:User severity is really asking the user if he
wants to iterate (e.g. - try again), so hard-wiring the answer to yes can
easily leave him locked in an endless loop.

A Level:Notify can safely be softened to a Level:Benign although you risk
leaving the user clueless, but can also avoid irritation. Fore example, to turn
off the ‘no records to process’ simply find Msg:NoRecords and turn the level
from Notify to Benign.

The riskiest case of all is when you try to soften a Level:Fatal to a Notify (or
even Benign!), but there are some applicable cases. (i.e., keep going even
with some files missing). A severity decrease of this magnitude usually
involves some serious extra work in the ABC embeds trying to keep the
ailing system alive.

Adding and using your own error messages

There are two techniques recommended when adding your own custom
error messages to the ABC templates. One is easier to implement and is
the safest, while the other is a little more efficient, but requires a little
more effort.

74 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Both techniques begin in the same manner. You need to create an equate
for the new message number, avoiding the Topspeed defaults. Since the
Id is a defined USHORT, you can probably start at 16K and be pretty
safe. If you are creating just one new message a simple EQUATE
statement will suffice, If there are many, an ITEMIZE is easier.

There are two ways of creating your custom error equates.

Technique #1

1. Edit the aberror.inc file (located in the \LIBSRC folder of Clarion),
putting the new equate after the ones predefined.

UpdateIllegal EQUATE
UseClosedFile EQUATE
ViewOpenFailed EQUATE
QBEColumnNotSupported EQUATE
YourCustomErrorHere EQUATE
 END

2. Go to the first field of the group in the aberror.trn file and increment the
field by the number of new messages you are adding. Then go to the end
of the group and append the messages using the format as described
before.

Features and benefits of the first technique include its simplicity to
implement and how easy the changes proliferate to all of your applications.
The only caveat is the need to merge the two files when upgrading to a new
TopSpeed release.

Technique #2

1. Create a myerror.inc file and add your equates there. Arrange for it to be
included in any application that requires the new error messages.

2. Create a myerror.trn file containing a group with a leading USHORT
(the number of elements) and then a group structure as before. The group
should have the static attribute as shown:

Myerrors GROUP,STATIC
USHORT(1)
USHORT(Msg:Boo)
BYTE(Level:Notify)
PSTRING(‘Surprise’)
PSTRING(‘Boo’)

END

3. In the Application Generator, press the Global button, press the embeds
button, and locate the Global objects, Global errors, Init method embed.
In the Data section source embed type:

INCLUDE(‘myerror.trn’)

4. In the Code section, After the parent call, type
SELF.AddErrors(MyErrors) ! MyErrors is the name of your group
SELF.Throw(Msg:Boo) ! Usually this line is somewhere else in your program

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 75

Although the second technique is a little harder work, it does not require
editing of TopSpeed files. Furthermore, errors can be applied on an
application by application basis.

Changing the Presentation of Error Messages

It is easy to tailor the presentation of messages to suit your own style
provided you are using Clarion 5. In the global errors embed section, you
will see a number of methods all starting with Take:

You can override the procedure that has the severity level you wish to alter
the appearance of. Caution is advised in some cases (i.e., If the system has
just discovered the disk is full, now is not a good time to display a 1024x768
24bit BMP file …).

Let’s modify the TakeFatal Procedure, adding a warning dialog that appears
before any fatal error:

1. Insert a source point before the Parent call in TakeFatal. Type the
following:

MESSAGE(‘You are in deep trouble. Please make a detailed note of the
message that follows this and then call 1800 999 9999 with your credit
card handy’,’Clang’ , ICON:Exclamation,Button:OK,BUTTON:OK,0)

The actual work is still done by the parent call. The very astute may even
notice that this MESSAGE could be implemented by giving yourself a
Notify level error message and then Throwing it as part of the fatal level
code.

For the less critical (and presumably more common) error messages it is
possible to go to town and use your own window structure. The window
structure is first added to the appropriate data section. Next, the detection
code is added before the parent call and should be terminated by a return of
appropriate level. The easiest way to see the correct level to return is simply
to look at the source code located in aberror.clw (don’t panic, the longest
take method is 6 lines long!)

Altering an Error Message for a Single Procedure (only)

The last example tackled changing an error message globally. The
technique described here changes the meaning of an error message for a
limited period of time.

1. Construct an ErrorBlock as if you were adding a fresh message The
difference in this case is that the Msg: number you use should be the
same as the one you want to override.

76 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

2. Place this error block in the data section of the procedure you want
the error to ‘live’ for (you don’t actually need the static attribute
although the compiler generates better code if you use it).

3. In the ThisWindow, Run (no parameters) method, all the following
code just before the parent call:

GlobalErrors.AddErrors(MyErrors)

Looks odd, but the Error Manager operates a LastInFirstOut (LIFO) stack of
errors, so if you add an error with a duplicate error number it ‘takes over’
until such time as it is removed.

4. Before leaving the procedure, add the following source:
GlobalErrors.RemoveErrors(MyErrors)

This removes the new copy of your error and restores the original data. Note
also we have used .Run rather than .Init/.Kill , this is so that the error manager
is active throughout the whole life of the procedure. This also illustrates that
there is an embed point ‘before/after’ the run statement in a procedure, you
just have to think a little bit to find it!

One caveat to remember here is that the scoping of errors is dynamic (e.g.,
the new errors applied from the time the AddErrors is executed to the time
the RemoveErrors is executed may or may not be the same as the lexical
scope of the procedure). Put another way, if you put these embeds into a
browse procedure, and that browse calls an update the errors will still be
substituted during the update process.

Note: The .Run method is very powerful. It really does let you
“ bite the cherry” before the procedure springs into life.
However, you need to remember that you are executing code
before the init method or after the kill. You cannot assume
the WindowManager data elements are set up properly.

Error Checking While in Stand-Alone Mode

Our last example is an interesting, but surprisingly easy task. We
produce a program that can run on its own without an operator pressing
buttons. (Obviously this assumes you created an application that does
something without a user being present, like scheduled archiving, data
mining etc.). The main thing to decide is precisely which errors you
want to fly blind with and which ones are so horrible you want the
system to grind to a halt and wait for help. For our example, we will
assume that all notify messages are trivial and that all user confirmations
can be answered in the affirmative.

Of course, we could tackle that problem simply by modifying all of the error
message severities. There are two problems with this. First, it is tedious.
Second, it is a static implementation (happens all the time for all
applications). Let me underline the second defect by further specifying that
our program has to be able to fly blind only when asked and that normally it
is supposed to interact with the user in the normal manner.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 77

Let’s start by providing a byte variable in the global data section called
Blind . This is our flag used to detect stand-alone operation.

Next, in the global embeds, global objects, global errors, TakeNotify
and before the parent call we insert an embed :

IF Blind THEN RETURN Level:Benign.

Next, we go into TakeUser and add (again before the parent call):

IF Blind THEN RETURN Level:Benign.

The RETURN is actually performing two different tasks. First, it is short-
stopping the parent call (the parent call performs the user interaction).
Second, it is returning a default value for the user response (Benign means
OK, keep going).

Earlier in this section, we said that always returning Benign from a TakeUser
could cause the machine to go into an infinite loop (where it keeps retrying
something it is simply unable to complete). Our stand-alone mode solution
can suffer from precisely this problem.

One possible solution is to put some loop tracking code into the TakeUser
function to attempt to spot loops. Such code is always going to be heuristic,
and you’ll have to decide a heuristic that suits you.

Here is a simple one. If more that 100 TakeUsers are executed inside one
minute then a no is returned:

!TakeUser : DataSection
LastTime LONG(07FFFFFFFH),STATIC
Count LONG,STATIC
C LONG,AUTO

!Takeuser : before the parent call (instead of previous code):
C = CLOCK()
IF C < LastTime THEN LastTime = C . ! Watch for midnight

IF C-LastTime > 6000 THEN
LastTime = C
Count = 0

END

IF Blind
Count += 1
RETURN CHOOSE(Count>100?Level:Cancel:Level:Benign)

END

Note the use of the STATIC attribute. This is because we need these values
to persist between invocations of the TakeUser procedure. Note, too, the high
initial value for last time, this is so that the code to trap crossings over
midnight will also trap the first TakeUser usage.

Error Class Summary

We have moved from simple textual modifications of the TRN file, through
more advanced modifications, and on to some significant alterations to base
class functionality, through use of the global embeds button. The latter is a
new feature in Clarion 5, supported only in the ABC templates.

78 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Naming Conventions

Many developers (on occasion) are guilty of spending insufficient time
with their database design, particularly with the labels (names) chosen
for their data elements. Often, these errors may lead to unwanted
compile errors and increased development time.

The legacy template user needs to be more aware of certain reserved names
that are used by the legacy templates. To avoid name conflicts between
generated labels and hand coded labels, a double colon convention is
used throughout the generated source (i.e., Menu::FileMenu).

Although the same is generally true with ABC templates, more attention has
been given to additional flexibility and control over the generated naming
conventions.

The window above references BRW6, the prefix used in the selected Browse
Class. If this prefix happens to clash with a user-defined prefix, the ABC
template user has the flexibility to override the name to a value that is more
meaningful (Example: BrowseClass).

Another area of importance is how class methods and properties are labeled.
For example, a “Try” method in the File Manager Class is consistent in
purpose and scope with a “Try” method of the INI Manager Class.

The Local Map

A standard feature that is built in to the ABC template design is the
generation of local MAP structures in each module created by the
Application Generator. As a result, the global MAP structure is reduced in
size and easier to read:

EXAMPLE:
!Global Map
 MAP
 MODULE('POPUPBC.CLW')
DctInit PROCEDURE
DctKill PROCEDURE
 END
!--- Application Global and Exported Procedure Definitions
 MODULE('POPUP001.CLW')
Main PROCEDURE !
 END
 END

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 79

The main benefit to this built-in ABC template feature is a significant
decrease in compile time, more noticeable with larger projects.

There is no trick, no technique to mention here. Local MAP
implementation is automatic.

INI File Management with ABC

Experienced legacy programmers have long understood the power of
using an initialization (or INI) file to control many aspects of an
application’s behavior. Primarily, the use of INI files is centered on two
core language statements. The GETINI statement is used to read
information from a selected INI file, and the PUTINI statement performs
the write operation

INI Manager Overview

The ABC INI Manager is an improved set of methods which allow more
power to a developer’s INI file processing. There are currently seven
methods encapsulated in the INI Base Class. Besides the standard Init
and Kill , there are six others:

Fetch and TryFetch
Gets or returns values from the INI file. At first, you may
think of Fetch as a direct replacement of GETINI, but this
powerful method also allows you to reference a window
structure, returning Maximize, XPos, YPos, Height, and
Width.

If the specified section and entry do not exist, the TryFetch
method returns an empty string. This allows you to check
the return value and take appropriate action when the INI
file entry is missing.

FetchField and TryFetchField
Here is where the old language statement GETINI parts ways
with the INI Manager. This method supports returning
specific comma delimited values assigned to a particular
entry.

FetchQueue
Although a little more housekeeping is needed in the INI
file, this method adds a series of values from the INI file into
the specified fields in the specified queue.

80 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Update
Finally the Update method writes entries to the INI file. If the
specified value is null (''), the existing entry is deleted.
Based on the parameter(s) referenced, Update writes a
single value specified by section and entry, or WINDOW
position and size attributes.

The Application Handbook and on-line help contains more information
about the INI Manager methods, and examples for implementation.

Standard Implementation

In general, you can easily replace your GETINI statements in legacy
embeds to the Fetch or TryFetch method of your choice. The ABC
templates generate an object named INIMgr automatically, so prepend
your methods with that name (i.e., INIMgr.Update).

Normally, you will use any ABC embed prior to opening the window to
set up INI values. For the WINDOW attributes, use an ABC embed
point located just after opening a window:

Likewise, you can replace your legacy PUTINI statements with the
Update method and appropriate parameters. You would normally use an
ABC embed located just outside of the main procedure’s ACCEPT loop,
and prior to leaving the procedure’s scope.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 81

INI Environment Support - The Global Preservation Society

A powerful new feature of the INI Manager is its ability to save the
condition of a program’s global data upon exiting the program, and
restoring the global values on the next program load. Its implementation
is simple, and involves a single button (Preserve) in the Application
Generator’s Global IDE:

Add any number of global variables that your program needs to
preserve.

Stay Tuned

Another benefit to using the INI Manager may be seen in the near
future. There are concrete plans for the implementation of Class libraries
that write to the system registry, or to web based cookies. Because these
new classes are designed with the INI compatibility in mind, the ABC
template user can virtually leave his code intact, and replace the INI
Manager base class with one of these new classes which will be
available soon. Stay tuned!

ABC Based Toolbars

Here are a couple of key features to consider when using toolbar
controls in the ABC template environment:

Unlimited Browses

A popular feature with all TopSpeed templates has been the automatic
implementation of toolbar buttons which directly affect an active browse
control. Standard toolbar buttons are available for data manipulation and
record selection.

For the legacy template user, this feature was limited to the primary
browse control of a window; if you had multiple browse controls on
different tabs, you would have to hand code the focus shift from one
browse control to another.

The ABC templates automatically detect an active browse control, and
pass the appropriate control to the toolbar buttons.

82 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Sitting on the DOCKABLE way

“Watching the haaand-code roll away....”

You can all cease your groaning at this time.

A powerful new feature only available through the ABC templates
involve the use of dockable toolbar windows.

To implement the dockable effect, you need to consider several rules:

◆ As you define your window that you will wish to dock, set
the following attributes (found in the Extra tab control):

Note the Dock and Toolbox sections. Through the IDE, you can control
the allowable areas to dock to, and also designate an Initial State.

◆ Add the WindowResize Extension template to the dockable
window. This will allow you to select a correct resize
strategy for the controls contained on the window.

◆ Finally, it is a good idea to add the following Snap properties
to your window through the following embeds:

!LocalObjects.ThisWindow WindowManager.Init after Open the Window
window{PROP:snapwidth, 1} = 20 ! Vertical size i.e., when made tall
window{PROP:snapheight, 1} = 100

window{PROP:snapwidth, 2} = 100 ! Horizontal size i.e., when made wide
window{PROP:snapheight, 2} = 20

window{PROP:snapwidth, 3} = 50 ! normal
window{PROP:snapheight, 3} = 50

The Snap properties allow specific width and height parameters to help
control and manage the dockable window sizes.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 83

The power of the ABC Translator Class

The ABC Translator Class provides very fast runtime translation of user
interface text. You can deploy a single application that serves all your
customers, regardless of their language preference. Use the
TranslatorClass to display several different user interface languages
based on end user input or some other runtime criteria, such as INI file
or control file contents. There are three techniques of translator
implementation:

1. Locally defined data structures.

2. Use an INI to store and configure your text.

3. Alternatively, you can use the Clarion translation files (*.TRN) to
implement a single non-English user interface at compile time.

Implementation

Earlier in this chapter, we discussed at length the implementation and
use of the ABC Error Class. You may be pleasantly surprised that there
are striking similarities in the implementation of the Translator Class.

◆ The Translator Class uses the AddTranslation method,
referencing a predefined GROUP of translator pairs as
shown:

EXAMPLE:

MyTranslations GROUP !declare local translations
Items USHORT(4) !4 translations pairs

PSTRING('Hello') ! item 1 text (macro)
PSTRING('Hola’) ! item 1 replacement text
PSTRING('&Where') ! item 2 text
PSTRING('&Donde') ! item 2 replacement text
PSTRING('&Dog') ! item 3 text
PSTRING('&Perro') ! item 3 replacement text
PSTRING('Goodbye')! item 4 text
PSTRING(' Adios ')! item 4 replacement text

END

Of course, declaring an entire lexicon in local data would be tedious and
cluttered.

◆ For large pairs of translations, an ASCII file that holds the
translation pairs is more preferable. These files normally can
be identified with a .TRN extension, but you are not limited
to that naming convention.

84 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

The implementation of the TRN file is accomplished by executing the
ExtractText method as shown:

 Translator.ExtractText='.\MyApp.trn'

The translator object scans your active window and controls for
matching text of the first item of the defined pair. When you apply the
TranslateWindow method, the text of the second item of the defined pair
is automatically applied.

A slightly different variation of the Translator Class implementation is
discussed in the next section.

Popup Menus

Popup menus in the ABC templates are almost overlooked and an after
thought due to the limited control required by the developer to
implement them. However, much power and control of popup menus is
available through the use of the ABC templates, objects, and selected
embeds.

Default Popup Menu Configuration in ABC

The ABC template generated code does not reference the PopupClass objects
encapsulated within the ASCIIViewerClass, BrowseClass, and
PrintPreviewClass. The extent of user control is check boxes which activate
or deactivate specific menu items related to the specific template you are
using.

In the Browse Class, popup menu options are available for standard data
manipulation (Insert, Change, Delete), record selection (Select), and
query options.

The Print Preview procedure (Previewer Class) add popup menu support
for a variety of Zoom and Tile options.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 85

The ASCII Viewer procedure offers popup support for printing, find,
and line selection.

The ABC Popup Menu Code Template

The ABC Templates declare a local PopupClass class and object for
each instance of a new Popup code template (named
DisplayPopupMenu in the Template Registry).

The naming convention used by the ABC template is PopupMgr# where
is the instance number of the Popup code template. The templates
provide the derived class so you can use the Popup code template
Classes tab to easily modify the popup menu behavior on an instance-
by-instance basis. However, you also have an extensive array of options
available in the code template interface to allow your specific style of
popup menu implementation and control.

Creating Your Own Popup

Try this example with popup menus to help you get more familiar with
“the ABC way”.

Create a custom popup menu in a form procedure that appears when the user
RIGHT-CLICKs over a selected entry field.

86 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

1. Declare your custom popup object

In this first step, we are declaring a new object, a popup object, that
will later inherit specific properties and methods. Take it another
step. You declare a string variable, and later assign it a value. An
object’s values are the properties and methods contained within the
base class we are deriving the object from.

So, for now, we are simply declaring an object that we will use. The &
indicates a reference to the PopupClass, meaning “the memory that my
object will need is the same as the PopupClass allocation”. Use the Local
Data, Other Declarations embed point and enter the following
declaration:
MyPopup &PopupClass

2. Instantiate (activate) the new popup object.
Now its time to bring our object to life. Use the ThisWindow(Window
Manager) Init PROCEDURE(Method), Initialize the procedure embed,
and enter the following:
MyPopup &= New PopupClass
MyPopup.Init()

The first statement activates our object, and the Init method handles
any initialization necessary for the object. In the first statement,
parentheses are optional after the NEW clause.

3. Add items to your popup to call a procedure or post an event using
the following methods:
Two other methods are demonstrated here. One method allows us to
mimic the behavior of a button that we have hidden. Whatever the
button is programmed to do, our popup menu item will also do. The
second method simply allows us to post an event that we can trap
(detect) in another embed. Use the ThisWindow(Window Manager) Init
PROCEDURE(Method), Open the window embed, and enter the
following:
MyPopup.AddItemMimic('Call MyProc',?MyProc)
MyPopup.AddItemEvent('Maximize',Event:Maximize)

To add an icon to the popup menu, use the following text:
MyPopup.AddItem('[' & PROP:Icon & '(computer.ico)]MenuChoice')

After adding our menu items, let’s write some code to detect for the
mouse RIGHT-CLICK, normally the standard action for popup display.

CHAPTER 5 GENERAL APPLICATION TECHNIQUES 87

4. Detect that the user RIGHTCLICKed over your selected field, and
display the popup.

First, alert the mouse right key by right-clicking over the desired control,
and add the Mouse right key in the IDE interface:

Next, add the following source code to the
ControlEvents,?PEO:Firstname,Alert Key embed point:
If Keycode() = MouseRight
 MyPopup.Ask()
END

Of course, additional code may be required, depending on the menu
action that you wish to perform, or event that you may need to trap.

5. When the window is closed, kill (deactivate) your custom popup
object.

This is another standard when you instantiate your own objects. As
important as it is to Initialize (Init), we use the appropriate embed point,
ThisWindow Window Manager, Kill PROCEDURE(), Leave the
procedure scope to free memory and effectively kill our object:
MyPopup.Kill

88 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Popup Text Translation

The ABC libraries provide support for custom text configuration using the
Translator Class. The configuration rules are similar as in other static
window controls. However, because a popup menu is not a static window
element, you must remember to invoke the TranslateString Translator Class
methods before you have created the elements for your popup menu (or
invoked your Popup Class methods). Here’s a small example:

MyTranslations GROUP !declare local translations of buttons
Items USHORT(1) !6 translations pairs

PSTRING('Maximize') ! item 1 text
PSTRING('Biggie') ! item 1 replacement text

 END

Translator TranslatorClass !declare Translator object
strvar string('Maximize')

We wish to translate the text of a popup menu item, Maximize. After
defining the translator pair (translate Maximize to Biggie), we define a
local string (strvar) with the matching popup default value.

Next, initialization and kill is the same as in other Translator Object
implementation, but the method for popup menus is slightly different:

Translator.Init !initialize Translator object
Translator.AddTranslation(MyTranslations) ! add default translation pair
strvar = Translator.TranslateString(strvar)

The third line of code above is significant. Instead of using the
TranslateWindow method, we opt for the TranslateString, since a popup is
not considered to be part of a static window structure.

Our popup menu now displays as follows:

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 89

6 - DATA AND FILE ACCESS TECHNIQUES

Data and File Access

Introduction

In this chapter we’ll review the ABC Data and File Handling capabilities,
and share some tips and techniques to assist you in migrating File Handling
and/or Data Handling code you have hand-coded (embedded) within your
Legacy applications. For those applications that you have created without the
use of Legacy File or Data Handling hand-coded (embedded) code, the
Application Converter tool is probably all you need to migrate your
application to ABC.

The easiest way to become familiar with the ABC library is to read the
Application Handbook--specifically the overview section for each Class. In
addition to the Application Handbook, Clarion also has a Class Viewer to
show you the ABC Library properties and methods in a tree view. On any
Classes tab, just press the button labeled “Application Builder Class Viewer ” to
view the ABC Library structure.

Additionally the ABC Template set contains two Code Templates, which
help you use the ABC Library: CallABCMethod and SetABCProperty. These
were created to “walk you through” writing ABC Library code in any
executable code embed point. These two code templates will write your
method calls and object property assignment for you!

Although you may have already determined that the Application Converter
tool will automatically handle the conversion of your application, reviewing
the previously referenced material along with the information that follows,
will give you insight regarding the significant improvements made to Clarion
and techniques when using the ABC Classes.

Chapter Organization

Overview Presents New (not available in Legacy) ABC File
Handling capability.

ABC FileManager, RelationManager, ErrorClass
Covers a high-level overview of the main ABC Classes
associated with File and Data handling.

Files, ABCs, and Legacy Applications
Identifies specific Legacy hand-coded (embedded) code
that you must manually migrate to conform to ABC
Library.

90 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

New ABC File Handling Capability
Identifies and explains new functionality available with
the ABC Library.

Advanced References
Supplies additional information and reference material
for the new functionality. Topics like how do I
implement Referential Integrity within Clarion’s
IDE to how do I find conceptual and overview
material about “Lazy Open” are covered in this
section.

Overview

Along with and primarily because of the software development options
available with the OOP paradigm, Clarion’s ABC classes make your
development job even easier than it was using the Legacy tools.

As an example, Clarion now relieves you of the tedious and error prone tasks
of explicitly handling many of the code steps related to the enforcement of
Referential Integrity (RI). Additionally, the ABC File methods automatically
perform all the error checking, data validation, and data auto-incrementing
(see following examples). These are just a few of the many innovative time
and resource saving features now available with the Clarion ABC Libraries.

New ABC File Handling Capability

• New lazy open capability

• Support for on-server Referential Integrity

• Improved record buffer integrity during RI updates or deletes.

• All priming / validation done in one place (localized in an
object)

• Improved integrity when using field validation.

• Support for INLIST validation.

• Improved recovery from a sequential read of a locked record

• Handling of the “between procedure” alias problem

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 91

ABC FileManager, RelationManager, BufferedPairsClass, ErrorClass

In this section we’ll briefly cover some of the ABC Classes. See the
Application Handbook for complete information about the following classes.

FileManager

The FileManager relies on the ErrorClass for most of its error handling.
Therefore, if your program instantiates the FileManager it must also
instantiate the ErrorClass. See Error Class for more information.

Perhaps more significantly, the FileManager serves as the foundation or
“errand boy” of the RelationManager. If your program instantiates the
RelationManager it must also instantiate the FileManager. See Relation
Manager Class for more information.

RelationManager

The RelationManager class declares a relation manager object that does the
following:

• Consistently and flexibly defines relationships between files—the
relationships need not be defined in a data dictionary; they may be
defined directly (dynamically) to the relation manager object.

• Reliably enforces discrete specified levels of referential integrity (RI)
constraints between the related files—the RI constraints need not be
defined in a data dictionary; they may be defined directly (dynamically)
to the relation manager object.

• Conveniently forwards appropriate file commands to related files—for
example, when a relation manager object opens its primary file, it also
opens any related files.

The RelationManager class provides “setup” methods that let you describe
the file relationships, their linking fields, and their associated RI constraints;
plus other methods to perform the cascadable or constrainable database
operations such as open, change, delete, and close.

Relationship to Other Application Builder Classes

FileManager and BufferedPairsClass

The RelationManager relies on both the FileManager and the
BufferedPairsClass to do much of its work. Therefore, if your program
instantiates the RelationManager it must also instantiate the FileManager and
the BufferedPairsClass. Much of this is automatic when you INCLUDE the
RelationManager header (ABFILE.INC) in your program’s data section. See
the Conceptual Example and see File Manager Class and Field Pairs Classes
for more information.

92 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

ViewManager

Perhaps more significantly, the RelationManager serves as the foundation or
“errand boy” of the ViewManager. If your program instantiates the
ViewManager it must also instantiate the RelationManager. See View
Manager Class for more information.

BufferedPairsClass

The BufferedPairsClass is a FieldPairs class with a third buffer area (a “save”
area). The BufferedPairsClass can compare the save area with the primary
buffers, and can restore data from the save area to the primary buffers (to
implement a standard “cancel” operation).

The BufferedPairsClass lets you move data between field pairs, and lets you
compare the field pairs to detect whether any changes occurred since the last
operation.

This class provides methods that let you identify or “set up” the targeted
field pairs.

Note: The paired fields need not be contiguous in memory, nor do
they need to be part of a structure. You can build a virtual
structure simply by adding a series of otherwise unrelated
fields to a BufferedPairsClass object. The BufferedPairsClass
methods then operate on this virtual structure.

Once the field pairs are identified, you call a single method to move all the
fields in one direction (left to right), and others single methods to move all
the fields in the other directions (right to left, left to buffer, etc.). You simply
have to remember which entity (set of fields) you described as “left” and
which entity you described as “right.” Other methods compares the sets of
fields and return a value to indicate whether or not they are equivalent.

Relationship to Other Application Builder Classes

The BufferedPairsClass is derived from the FieldPairsClass. The
BrowseClass, ViewManager, and RelationManager use the FieldPairsClass
and BufferedPairsClass to accomplish various tasks.

FieldPairsClass

In database oriented programs there are some fundamental operations that
occur over and over again. Among these repetitive operations is the saving

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 93

and restoring of field values, and comparing current field values against
previous values.

The ABC Library provides two classes (FieldPairsClass and
BufferedPairsClass) that supply this basic buffer management. These classes
are completely generic so that they may apply to any pairs of fields,
regardless of the fields’ origins.

Tip: The fundamental benefit of these classes is their generality;
that is, they let you move data between pairs of structures
such as FILE or QUEUE buffers, and compare the data, without
knowing in advance what the buffer structures look like or, for
that matter, without requiring that the fields even reside in
conventional buffer structures.

In some ways the FieldPairsClass is similar to Clarion’s deep assignment
operator (:=: see the Language Reference for a description of this operator).
However, the FieldPairsClass has the following advantages over deep
assignment:

• Field pair labels need not be an exact match
• Field pairs are not limited to GROUPs, RECORDs, and QUEUEs
• Field pairs are not restricted to a single source and a single destination
• You can compare the sets of fields for equivalence
• You can mimic a data structure where no structure exists

The FieldPairsClass has the disadvantage of not handling arrays (because the
FieldPairsClass relies on the ANY data type which only accepts references to
simple data types). See the Language Reference for more information on the
ANY data type.

FieldPairsClass Concepts

The FieldPairsClass lets you move data between field pairs, and lets you
compare the field pairs to detect whether any changes occurred since the last
operation.

This class provides methods that let you identify or “set up” the targeted
field pairs.

Once the field pairs are identified, you call a single method to move all the
fields in one direction (left to right), and another method to move all the
fields in the other direction (right to left). You simply have to remember

94 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

which entity (set of fields) you described as “left” and which entity you
described as “right.” A third method compares the two sets of fields and
returns a value to indicate whether or not they are equivalent.

Note: The paired fields need not be contiguous in memory, nor do
they need to be part of a structure. You can build a virtual
structure simply by adding a series of otherwise unrelated
fields to a FieldPairs object. The other FieldPairs methods then
operate on this virtual structure.

Relationship to Other Application Builder Classes

The ViewManager and the BrowseClass use the FieldPairsClass and
BufferedPairsClass to accomplish various tasks.

The BufferedPairsClass is derived from the FieldPairs class, so it provides all
the functionality of the FieldPairsClass; however, this class also provides a
third buffer area (a “save” area), plus the ability to compare the save area
with the primary buffers, and the ability to restore data from the save area to
the primary buffers (to implement a standard “cancel” operation).

Error Class

The ErrorClass declares an error manager which consistently and flexibly
handles any errors. That is, for a given program scope, you define all
possible errors by ID number, severity, and message text, then when an error
or other notable condition occurs, you simply pass the appropriate ID to the
error manager which processes it appropriately based on its severity level.

The defined “errors” may actually include questions, warnings, notifications,
messages, benign tracing calls, as well as true errors. The ErrorClass comes
with about forty general purpose database errors already defined. You can
expand this list to include additional general purpose errors, your own
application-specific errors, or even field specific data validation errors. Your
expansion of the errors list may be “permanent” or may be done dynamically
at run-time.

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 95

Files, ABCs, and Legacy Applications

In most cases, Clarion’s RAD (Rapid Application Development) tools
automatically generate the File Handling code for you. If you are interested
in understanding what is required to “port” your legacy hand-coded
(embedded) code or just learning about Clarion’s ABC File Handling
methods, the following code examples will give you a brief overview of
some of the important concepts.

Note: If you have hand coded (embedded) file handling Clarion 2.003
code as illustrated below, you will need to manually convert
the code to the Clarion ABC equivalent code.

Clarion 2.003 code Clar ion ABC Libr ary equivalent

OPEN(File) Relate:File.Open() !This ensures all related files are opened,
SHARE(File) Relate:File.Open() ! as well as the named file, so Referential
CheckOpen(File) Relate:File.Open() ! Integrity constraints can be enforced.
PUT(File) Relate:File.Update() ! The Relate: object enforces RI constraints
CLOSE(File) Relate:File.Close() ! This ensures all related files are closed.

ADD(File) Access:File.Insert() !These ABC methods perform error handling
 IF ERRORCODE() THEN STOP(ERROR()). ! so the error check is unnecessary. Insert

! also handles auto-inc and data validation.

PUT(File) Relate:File.Update() !The Relate: object enforces RI constraints
IF ERRORCODE THEN STOP(ERROR()). ! in Update() and Delete() methods.

DELETE(File) Relate:File.Delete(0) !Parameter suppresses the default confirm
 IF ERRORCODE THEN STOP(ERROR()). ! dialog when 0.

Another common file handling situation is the simple file processing LOOP.
In 2.003, you would write code like this:

SET(key,key)
LOOP
NEXT(File)
IF ERRORCODE() THEN BREAK. !Break at end of file
!Check range limits here
!Process the record here

END

And here is the equivalent ABC code:

96 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

SaveState = Access:File.SaveFile() !Tell ABC to “bookmark” where it’s at
! (just in case)

SET(key,key) !Note there’s no change here
LOOP UNTIL Access:File.Next() !Breaks when it tries to read past end

! of file
!Check range limits here
!Process the record here

END
Access:File.RestoreFile(SaveState) !Undo the “bookmark” (SaveState must

! be a USHORT)

Another common code construct is getting a record from a file. In 2.003, you
might write code like this:

IF File::used = 0
CheckOpen(File)

END
File::used += 1
CLEAR(FIL:record)
Fil:Code = 123
GET(File,FIL:CodeKey)
IF ERRORCODE() THEN CLEAR(FIL:Record).
File::Used -= 1
IF File::used = 0
 CLOSE(file)
END

And here is the equivalent ABC code:

Relate:File.Open() !This handles all error conditions
CLEAR(FIL:record)
FIL:Code = 123
Access:File.Fetch(FIL:CodeKey) !Fetch clears the record on errors
Relate:File.Close()

And of course, the file Open and Close method calls can be generated for
you if you just add the file to the procedure's File Schematic. The ABC
Library is smart enough to only open a file if it really needs to, making your
program more efficient. Using Clarion's ABC Library methods you write less
code to accomplish the same (or more) functionality.

New ABC File Handling Capability

The following is a brief overview of the major File Handling capability
available with the ABCs.

In addition to the following information, it is recommended that you spend
time becoming familiar with the FileManager and RelationManager Classes.
See the appropriate chapters of the Application Handbook.

• New lazy open capability

• Support for on-server Referential Integrity

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 97

• Improved record buffer integrity during RI updates or deletes.

• All priming / validation done in one place (localized in an
object)

• Improved integrity when using field validation.

• Support for INLIST validation.

• Improved recovery from a sequential read of a locked record

• Handling of the “between procedure” alias problem

Lazy Open

The LazyOpen property indicates whether to open the managed file
immediately when a related file is opened, or to delay opening the file until it
is actually accessed. A value of one (1 or True) delays the opening; a value of
zero (0 or False) immediately opens the file.

Delaying the open can improve performance when accessing only one of a
series of related files.

Implementation: The Init method sets the LazyOpen property to True. The ABC Templates
override this default if instructed. See Template Overview—File Handling for
more information.

The various file access methods (Open, TryOpen, Fetch, TryFetch, Next,
TryNext, Insert, TryInsert, etc.) use the UseFile method to implement the
action specified by the LazyOpen property

See Also: Init, Open, TryOpen, Fetch, TryFetch, Next, TryNext, Insert, TryInsert,
UseFile

Referential Integrity Handling

With the introduction of the ABC Library and the ABC Templates, the
complex task of maintaining RI efficiently in a Client/Server environment is
written for you by the Application Generator.

Maintaining the Referential Integrity of a database is a key element to
Relational Database design. Referential Integrity means that, for every One-
to-Many (Parent-Child) relationship between tables in the database there
exists a Parent record for every Child record (no “orphan” records). To put it
in more formal terms, there must be a valid Primary Key value for every
existing Foreign Key in the database.

“Orphan” records can occur when the Parent record is deleted, or the
Primary Key value (which provides the link to the Foreign Key in the Child
record) is changed. Preventing these “orphan” records requires that the

98 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

database contain rules stating what action will occur when the end-user
attempts to delete the Parent record, or change the Primary Key value.

The most common RI rules are “restrict” (do not allow the delete or change)
and “cascade” (delete the related Child records or change their Foreign Key
values to match the new Primary Key value in the Parent record). A rarely
used rule is “clear” (change the Foreign Key values to NULL when the
Parent record is deleted or the Primary Key value in the Parent record
changes).

RI constraint enforcement is best handled in Client/Server applications by
specifying the RI rules on the back-end database server, usually by defining
Triggers, Stored Procedures, or Declarative RI statements. By doing this, the
database server can automatically handle RI enforcement without sending
any Child records across the network to the Client application for processing.
For example, if the rule for Delete is “cascade,” the database server can
simply perform all the required Child record deletions when deleting the
Parent record from the database—without sending anything back across the
network to the Client application.

In the Clarion Dictionary Editor, when you establish a relationship between
two files (tables), you can also specify the RI rules for that relationship.
Since the database server will actually be handling the RI functionality, the
most appropriate way to specify the RI rules in the Clarion Data Dictionary
would be to specify “no action” so the Client does nothing.

Data Validation

Data validation means the enforcement of business rules (that you specify) as
to what values are valid for any particular field in the database. Typical data
validation rules enforce such things as: a field may not be left empty (blank
or zero), or the field’s value must be either one or zero (true or false) or
within a certain specified numeric range, or the field’s value must exist as a
Primary Key value in another file (table).

These data validation rules can be specified either in the Client application or
in the back-end database server. The best way to handle implementing data
validation rules in your Client/Server applications, so as to generate minimal
network traffic, is to specify the business rules in both the Client application
and the database server:

• By enforcing data validation rules in the Client application you ensure
that all data sent to the back-end is already valid. By always receiving
valid data the database server will not generate error messages back to
the Client application. The net effect of this is to reduce the network
traffic back from the database server.

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 99

• By enforcing data validation rules on the back-end database server you
ensure that the data is always valid, no matter what application is used to
update the database—even updating the data with interactive SQL
cannot corrupt the data. Therefore, you are covered from both directions.

Enforcing these rules in both your Clarion applications and the database
server may seem like a lot of work. However, the Clarion Data Dictionary
Editor allows you to specify the most common rules by simply selecting a
radio button on the Validity Checks tab of the affected field’s definition. By
doing this, the actual code to perform the data validation is written for you
by the Application Generator’s Templates.

The BUFFER Statement

The Clarion BUFFER statement can have a tremendous impact on Client/
Server application performance. BUFFER tells the file driver to set up a
buffer to hold previously read records and a read-ahead buffer for anticipated
record fetches. It also specifies a time period during which the buffered data
is considered to be valid (after which the data is re-read from the back-end
database server).

When the file driver knows it has buffers to hold multiple records it can
optimize the SQL statements it generates to the back-end database server.
This allows the back-end database server to return a set of records instead of
a single record at a time (also called “fat fetches”). The net effect of this is to
change the pattern of network traffic from many small pieces of data to fewer
but larger chunks of data, making for more efficient overall network
utilization. The most common use of BUFFER would probably be in
procedures which allow the end-user to browse through the database.

By setting up buffers to hold already read records, the Client machine fetches
records from the local buffer when the user has paged ahead then returns to a
previous page of records, instead of generating another request to the back-
end database server for the same page of records. This eliminates the
network traffic normally generated for subsequent requests for the same set
of records.

Setting up read-ahead buffers enables the Client application to anticipate the
user’s request for the next page of records and receive them from the back-
end database server while the user is still examining the first page.
Therefore, when the user finally does request the next page, those records are
also fetched from the local buffer on the Client machine, giving the end-user
apparently instantaneous database retrieval.

100 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Advanced References

Now that you have a basic understanding of the Clarion ABCs, let’s take a
look at how easy it is to implement a few of these “built-in” objects, methods
and properties into your application. You’ll soon discover that incorporating
complex functionality like Referential Data Integrity within your application
is as easy as selecting a radio button or checking a check box within
Clarion’s IDE.

Let’s start with Referential Integrity (RI). For those of you that have been
developing software for a few years, you’ll immediately appreciate the ease
at which you can include this Clarion supplied, highly complex functionality
within your application. Much of the elegance, effectiveness, and efficiency
of Clarion’s built-in RI functionality is only achievable through the
incorporation of the OOP paradigm within the ABC libraries.

Note: In this section we’ll only cover those IDE items relevant to the
subject matter presented in this chapter.

Becoming familiar with concepts described in the Application
Handbook, especially the following chapters, will quickly
orient you to features available within the IDE.

Application Handbook Chapters:

Template Overview
Wizards and Utility Templates
Procedure Templates
Control Templates
Code and Extension Templates

Referential Integrity

To gain a complete working knowledge of RI as it applies to Clarion ABCs
refer to the following material:

“Global ABC Template Settings - File Control Tab Options”
Application Handbook

“Procedure Templates - Process Template”
Application Handbook

“Database Design and Network Traffic” Programmer’s Guide
“Dictionary Editor” User’s Guide
“Part IV ISAM Database Drivers” User’s Guide
“Part V SQL Accelerator Drivers” User’s Guide
“FileManager” Application Handbook
“RelationManager” Application Handbook

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 101

Referential Integrity and the IDE

There are two main IDE Dialogs used to easily establish/modify RI:

Global ABC Template Settings - File Control Tab Options

Enclose RI code in transaction frame
Check this box to ROLLBACK changes if an update fails during
a Referential Integrity maintenance operation (transaction). You
should clear this box for file systems that do not support
transaction frames such as Clipper, dBase, and FoxPro. See
Database Drivers for information on individual file systems. See
LOGOUT, COMMIT, and ROLLBACK in the Language
Reference.

Tip: If all files in a relation chain are using the same file system,
and the file system supports transaction framing, and you do
not want transaction framing around the RI code, you must
clear the check box for each file in Individual File Overrides
and in Global Settings.

102 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Procedure Templates - Process Template

Use RI constraints on action
Check this box to enforce the RI constraints defined in your data
dictionary. Clear this box to generate a simple PUT or DELETE
depending on the Action for Process chosen.

Lazy Open

To gain a complete working knowledge of Lazy Open as it applies to
Clarion ABCs refer to the following material:

“Global ABC Template Settings - File Control Tab Options”
Application Handbook

“Global ABC Template Settings - Individual File Overrides”
Application Handbook

“UseFile (use LazyOpen file) Application Handbook
“UseView (use LazyOpen file) Application Handbook
“PROP:LazyOpen” Language Reference

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 103

Lazy Open and the IDE

There are two main IDE Dialogs used to easily establish/modify Lazy Open:

Global ABC Template Settings -File Control Tab Options

Defer opening files until accessed
Specifies when your application opens related files. Check the
box to delay opening the file until it is actually accessed.
Delaying the open can improve performance when accessing
only one of a series of related files. Clear the box to open the file
immediately whenever a related file is opened. See File Manager
Class— LazyOpen and UseFile for more information.

104 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Global ABC Template Settings -Individual File Overrides

Defer Opening File
Specifies when your application opens a file. Select an open
from the dropdown list . In most cases you will not have to
modify this setting. “Yes” can improve performance since it
causes the selected file to only open when needed. “No” will
cause the file to open immediately whenever a related file is
opened. See File Manager Class— LazyOpen and UseFile for
more information.

Buffer Handling

To gain a complete working knowledge of Buffer Handling as it applies to
Clarion ABCs refer to the following material:

“BufferedPairsClass” Application Handbook
“FieldPairsClass” Application Handbook
“Buffer statement” User’s Guide
“Part IV ISAM Database Drivers” Programmer’s Guide
“Part V SQL Accelerator Drivers” Programmer’s Guide
“BUFFER (set record paging)” Language Reference
“FLUSH (flush buffers)” Language Reference
“PRESS (put characters in the buffer)” Language Reference
“PRESSKEY (put a keystroke in the buffer)” Language Reference
“STREAM (enable operting stream buffering)” Language Reference
“PROP:Buffer” Language Reference

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 105

Buffer Handling and the IDE

Quick-Scan Records (buffered reads)
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See
Part III - Database Drivers for more information. These file
drivers read a buffer at a time, allowing for fast access. In a
multi-user environment these buffers are not 100% trustworthy,
because another user may change a record between accesses.
Without quick-scan, the driver refills the buffers before each
record access as a safeguard.

Quick-scanning is the normal way to read records for browsing.
However, rereading the buffer may provide slightly improved
data integrity in some multi-user circumstances at the cost of
substantially slower processing.

106 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Quick-Scan Records (Reports)
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See
Database Drivers for more information. These file drivers read
several records at a time. In a multi-user environment these
buffers are not 100% trustworthy because another user may
change a record between accesses. As a safeguard, the driver
refills the buffers before each record access.

Quick scanning is the normal way to read records for batch
processing. However, rereading the buffer may provide slightly
improved data integrity in some multi-user circumstances at the
cost of substantially slower processing.

Quick-Scan Records
Specifies buffered access behavior for file systems that use
multi-record buffers (primarily ASCII, BASIC, and DOS). See

CHAPTER 6 DATA AND FILE ACCESS TECHNIQUES 107

Database Drivers for more information. These file drivers read
several records at a time. In a multi-user environment these
buffers are not 100% trustworthy, because another user may
change a record between accesses. As a safeguard, the driver
refills the buffers before each record access.

Quick scanning is the normal way to read records for batch
processing. However, rereading the buffer may provide slightly
improved data integrity in some multi-user circumstances at the
cost of substantially slower processing.

Threaded
Specifies whether the application generator adds the THREAD
attribute to FILE structures. THREAD is needed for MDI
browse and form procedures to prevent record buffer conflicts
when the end user changes focus from one thread to another.

Use File Setting Sets the THREAD attribute according to the setting
in the data dictionary. See the User’s Guide—
Dictionary Editor—File Properties.

All Threaded Adds the THREAD attribute to each FILE.

108 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

External
Specifies whether the application generator adds the
EXTERNAL attribute to FILE structures.
EXTERNAL specifies the memory for the FILE’s
record buffer is allocated by an external library. See
the Language Reference for more information.

Note: When using EXTERNAL to declare a FILE shared by multiple
libraries (.LIBs, or .DLLs and .EXE), only one library should
define the FILE without the EXTERNAL attribute. This ensures
that there is only one record buffer allocated for the FILE and
all the libraries and the .EXE will reference the same memory
when referring to data elements from that FILE.

One Threaded Omits the THREAD attribute for each FILE.

None External Omits the EXTERNAL attribute from all file
declarations and enables the Export All File
Declarations prompt.

Export All File Declarations
Check this box to export file
declarations (see Module Definition
Files in the Programmer’s Guide).
This prompt is only available when
you specify Dynamic Link Library
(.DLL) as the Destination Type in the
Application Properties dialog.

All External Adds the EXTERNAL attribute to all file
declarations and lets you specify the Declaring
Module and whether All files are declared in another
.APP.

Declaring Module
The file name (without extension)
of the MEMBER module containing
the FILE definition without the
EXTERNAL attribute. If the FILE
is defined in a PROGRAM module,
leave this field blank.

All files are declared in another .APP
Check this box to ensure that files
are opened and closed at the right
time, thereby preserving the
integrity of the file buffers, when
the files are declared in another
application (rather than hand code).

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 109

7 - WINDOW AND CONTROL TECHNIQUES

Introduction
In this chapter we’ll review two major functional enhancements to Clarion.
They are directly related to the incorporation of the OOP paradigm and only
available with the ABC Class Libraries. They are:

• Window Resizer - Major Enhancement.
(ABC WindowResizeClass)

• Multi-Language Support. - New.
(ABC TranslatorClass)

Note: The Application Handbook has complete information and
example code for both of the above ABC Classes.

Overview

Window Resizer

The WindowResizeClass lets the end user resize windows that have
traditionally been fixed in size due to the controls they contain (List boxes,
entry controls, buttons, nested controls, etc.). The WindowResizeClass
intelligently repositions the controls, resizes the controls, or both, when the
end user resizes the window.

Multi-Language Support

By default, the ABC Templates, the ABC Library, and the
Clarion visual source code formatters generate American English user
interfaces. However, Clarion makes it very easy to efficiently produce non-
English user interfaces for your application programs.

The TranslatorClass provides very fast runtime translation of user interface
text. The TranslatorClass lets you deploy a single application that serves all
your customers, regardless of their language preference. That is, you can use
the TranslatorClass to display several different user interface languages
based on end user input or some other runtime criteria, such as INI file or
control file contents.

Alternatively, you can use the Clarion translation files (*.TRN) to implement
a single non-English user interface at compile time.

110 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Resizer

The Resizer - Overview

The intelligent repositioning is accomplished by recognizing there are many
different types of controls that each have unique repositioning and resizing
requirements. The WindowResizeClass also recognizes that controls are
often nested, and considers whether a given control’s coordinates are more
closely related to the window’s coordinates or to another control’s
coordinates. That is, intelligent repositioning correctly identifies each
control’s parent. See SetParentControl for more information on the parent
concept.

The intelligent repositioning includes several overall strategies that apply to
all window controls, as well as custom per-control strategies for resizing and
repositioning individual controls. The overall strategies include:

See SetStrategy for more information on resizing strategies for individual
controls.

Note: To allow window resizing you must set the WINDOW’s frame
type to Resizable and you must check the immediate box to
add the IMM attribute to the WINDOW. We also recommend
adding the MAX attribute. See The Window Formatter—The
Window Properties Dialog in the User’s Guide for more
information on these settings.

WindowResize

The WindowResize template lets the end user resize windows that have
traditionally been fixed in size due to the controls they contain (List boxes,
entry controls, buttons, etc.).

Tip: The WindowResize code repositions and resizes each control
relative to its parent. This approach provides attractive,
rational resizing of virtually any window, regardless of the
controls it contains.

The template generates code to reposition the controls, resize the controls, or
both, when the end user resizes the window.

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 111

Resize Strategy
Specifies the method for resizing and repositioning the controls
to fit within the new window size. Choose from:

Resize Scales all window coordinates by the same amount,
thus preserving the relative sizes and positions of all
controls. That is, all controls, including buttons and
entry fields get taller and wider as the window gets
taller and wider. Window fonts are unchanged.

Spread Maintains the design-time look and feel of the
window by applying a strategy specific to each
control type. For example, BUTTON sizes are not
changed but their positions are tied to the nearest
window edge. In contrast, LIST sizes and positions
are scaled in proportion to the window.

Surface Makes the most of the available pixels by
positioning other controls to maximize the size of
LIST, SHEET, PANEL, and IMAGE controls. We
recommend this strategy for Wizard generated
windows.

Don’t Alter Controls
Controls are not resized when the window is resized.

Tip: Even though list boxes may be resized, the column widths
within the list box are not resized. However, the right-most
column does expand or contract depending on the available
space.

112 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Restrict Minimum Window Size
Check this box to specify a minimum window height and width.
This lets you enforce a minimum reasonable size of the window
based on the size and number of controls on the window. In
other words, you can keep your end user from shrinking the
window so much that its controls become invisible or
unrecognizable.

Minimum Width Specify the minimum width of the window in dialog
units. Dialog units are based on the window’s font
and are 1/4 of the average character width.

Zero sets the window minimum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the minimum restriction takes
effect.

Minimum Height Specify the minimum height of the window in
dialog units. Dialog units are based on the window’s
font and are 1/8 of the character height.

Zero sets the window minimum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the minimum restriction takes
effect.

Restrict Maximum Window Size
Check this box to specify a maximum window height and width.
This lets you enforce a maximum reasonable size of the window.

Maximum Width Specify the maximum width of the window in dialog
units. Dialog units are based on the window’s font
and are 1/4 of the average character width.

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 113

Zero sets the window maximum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the maximum restriction takes
effect.

Maximum Height
Specify the maximum height of the window in
dialog units. Dialog units are based on the window’s
font and are 1/8 of the character height.

Zero sets the window maximum to the size at which
the window opens (not necessarily the design time
size). In other words, it takes into account any .INI
setting plus any runtime Property syntax. Thus, we
allow the developer to open the window, perform
any dynamic control production (including resizing
the window) before the maximum restriction takes
effect.

Override Control Strategies
Press this button to override the default resize strategy for
individual controls. This opens the Override Control Strategies
dialog.

114 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Override Control Strategies

The Override Control Strategies dialog lets you override the default resize
strategy for individual controls. For example, by default, buttons are “fixed”
to the nearest window borders and are not repositioned like most other
controls. However, if you want your procedure to reposition the button like
other controls, you may specify this here. See also Window Resize Class—
SetStrategy.

Press the Insert button to select the control for which to set the resize
strategy. Then choose from the following sizing and positioning options:

Horizontal Resize Strategy
Specify how the control’s width is determined when the end user
resizes the window. Choose from:

Lock Width The control’s design time width does not change.

Constant Right Border
Locks right edge, moves left.

Vertical Resize Strategy
Specify how the control’s height is determined when the end
user resizes the window. Choose from:

Lock Height The control’s design time height does not change.

Constant Bottom Border
Locks bottom edge, moves top.

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 115

Horizontal Positional Strategy
Specify how the control’s horizontal position is determined
when the end user resizes the window. Choose from:

Lock Position The control’s left edge maintains a fixed distance
(the design time distance) from parent’s left edge.

Fix Right The control’s right edge maintains a proportional
distance from parent’s right edge.

Fix Left The control’s left edge maintains a proportional
distance from parent’s left edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Right or Fix Left, whichever is
appropriate.

Vertical Positional Strategy
Specify how the control’s vertical position is determined when
the end user resizes the window. Choose from:

Lock Position The control’s top edge maintains a fixed distance
(the design time distance) from parent’s top edge.

Fix Bottom The control’s bottom edge maintains a proportional
distance from parent’s bottom edge.

Fix Top The control’s top edge maintains a proportional
distance from parent’s top edge.

Fix Center The control’s center maintains a proportional
distance from parent’s center.

Fix Nearest Applies Fix Top or Fix Bottom, whichever is
appropriate.

116 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Resizer Configuration Options

Automatically find parent controls
Check this box to set parent/child relationships among window
controls. Clearing the box makes the WINDOW the parent of all
its controls. Setting parent/child relationships lets any special
scaling cascade from parent to child. See WindowResizeClass
Methods—SetParentDefaults for more information.

Optimize Moves
Check this box to move all controls at once during the resize
operation, producing a snappier resize and avoiding bugs on
some windows. See WindowResizeClass Properties—
DeferMoves for more information.

Optimize Redraws
Check this box to make controls transparent (TRN attribute)
during the resize operation, producing a smoother redraw and
avoiding bugs on some windows. See WindowResizeClass
Properties—AutoTransparent for more information.

Classes Tab

Use the Classes tab to override the global Resizer setting. See Template
Overview—Classes Tab Options—Global and Local.

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 117

Translator

Multi-Language Support - Overview

TranslatorClass Concepts

The TranslatorClass and the ABUTIL.TRN file provide a way to perform
language translation at runtime. That is, you can make your program display
one or more non-English user interfaces based on end user input or some
other runtime criteria such as INI file or control file contents. You can also
use the TranslatorClass to customize a single application for multiple
customers. The TranslatorClass operates on all user interface elements
including window controls, window titlebars, tooltips, list box headers, and
static report controls.

The ABUTIL.TRN File

The ABUTIL.TRN file contains translation pairs for all the user interface
text generated by the ABC Templates and the ABC Library. A translation
pair is simply two text strings: one text string for which to search and another
text string to replace the searched-for text. At runtime, the TranslatorClass
applies the translation pairs to each user interface element.

You can directly edit the ABUTIL.TRN file to add additional translation
items. We recommend this method for translated text common to several
applications. The translation pairs you add to the Translator GROUP
declared in ABUTIL.TRN are automatically shared by any application
relying on the ABC Library and the ABC Templates.

Note: Save this file in a separate directory to avoid it being
overwritten.

Translating Custom Text

The default ABUTIL.TRN translation pairs do not include custom text that
you apply to your windows and menus. To translate custom text, you simply
add translation pairs to the translation process, either at a global level or at a
local level according to your requirements. To help identify custom text, the
TranslatorClass automatically identifies any untranslated text for you; you
need only supply the translation. See ExtractText in the Application
Handbook for more information.

Macro Substitution

The TranslatorClass defines and translates macro strings. A TranslatorClass
macro is simply text delimited by percent signs (%), such as %mymacro%.

118 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

You may use a macro within the text on an APPLICATION, WINDOW, or
REPORT control or title bar, or you may use a macro within TranslatorClass
translation pairs text.

You define the macro with surrounding percent signs (%), and you define its
substitution value with a TranslatorClass translation pair (without percent
signs).

This macro substitution capability lets you

• translate a small portion (the macro) of a larger text string

• do multiple levels of translation (a macro substitution value may also
contain a macro)

Relation to Other Application Builder Classes

The TranslatorClass object is called Translator, and each template-generated
procedure calls on the Translator object to translate all text for its
APPLICATION, WINDOW or REPORT. Additionally, the template-
generated PopupClass objects (ASCIIViewer and BrowseBox templates) and
PrintPreviewClass objects (Report template) use the Translator to translate
menu text.

Note: The ABC Templates use the TranslatorClass to apply user
interface text defined at compile time. The templates do not
provide a runtime switch between user interface languages.

Conceptual Example

The following example shows a typical sequence of statements to declare,
instantiate, initialize, use, and terminate a TranslatorClass object.

This example applies both default and custom translations to a “preferences”
window. It also collects and stores untranslated text in a file so you don’t
have to manually collect the text to translate.

Example:

PROGRAM
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

INCLUDE('ABUTIL.INC') !declare TranslatorClass
MAP
END

MyTranslations GROUP !declare local translations
Items USHORT(4) !4 translations pairs

PSTRING('Company') ! item 1 text (macro)
PSTRING('Widget %CoType%') ! item 1 replacement text
PSTRING('&Sound') ! item 2 text
PSTRING('&xSoundx') ! item 2 replacement text

CHAPTER 7 WINDOW AND CONTROL TECHNIQUES 119

PSTRING('&Volume') ! item 3 text
PSTRING('&xVolumex') ! item 3 replacement text
PSTRING('OK') ! item 4 text
PSTRING('xOKx') ! item 4 replacement text

END
INIMgr INIClass !declare INIMgr object
Translator TranslatorClass !declare Translator object
CoType STRING(‘Inc.’) !default company type
Sound STRING('ON ') !default preference value
Volume BYTE(3) !default preference value

PWindow WINDOW('%Company% Preferences'),AT(,,100,35),IMM,SYSTEM,GRAY
CHECK('&Sound'),AT(8,6),USE(Sound),VALUE('ON','OFF')
PROMPT('&Volume'),AT(31,19),USE(?VolumePrompt)
SPIN(@s20),AT(8,20,21,7),USE(Volume),HVSCROLL,RANGE(0,9),STEP(1)
BUTTON('OK'),AT(57,3,30,10),USE(?OK)

END
CODE
INIMgr.Init('.\MyApp.INI') !initialize INIMgr object
INIMgr.Fetch('Preferences','CoType',CoType) !get company type, default

! Inc.
Translator.Init !initialize Translator object:

! add default translation pairs
Translator.AddTranslation(MyTranslations) !add local translation pairs
Translator.AddTranslation(‘CoType’,CoType) !add translation pair from

! INI
Translator.ExtractText='.\MyApp.trn' !collect user interface text
OPEN(PWindow)
Translator.TranslateWindow !translate controls & titlebar
ACCEPT
IF EVENT() = EVENT:Accepted
IF FIELD() = ?OK
INIMgr.Update('Preferences','Sound',Sound)
INIMgr.Update('Preferences','Volume',Volume)
POST(EVENT:CloseWindow)

. . .
Translator.Kill !write user inteface text

120 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

CHAPTER 8 BROWSE TECHNIQUES 121

8 - BROWSE PROCEDURE TECHNIQUES

Introduction
This chapter explores the enhancements to the Browse box template and
procedures that use it. There are several classes that work closely together
to produce this functionality.

Note: The Application Handbook has complete information and
example code for the ABC Classes used in a Browse
procedure.

Overview

A “Browse Procedure” can be made in several ways. You can create one
using the Browse Wizatron, the Browse wizard, the Browse Procedure
template, or by populating a Browse Box control template on a Window
procedure. These all produce similar results--a window with a LIST
control that displays data. All other functionality (update capability,
selection capability, sorting, totaling, etc.) is optional and generally set at
design time using the template prompts.

The ABC template prompts are very similar, although there are some
additional prompts to extend customization capabilities. In addition, the
code generated uses the ABC library, allowing more customization with
less effort on the developer’s part. Many new features are now directly
supported when using the ABC templates, and a multitude of additional
features are easily implemented by setting ABC properties or calling ABC
methods.

Here are some of the features made possible by the ABC templates and
libraries:

◆ Improved edit-in-place support

◆ Increased efficiency (especially under SQL)

◆ Ability to avoid loading browse until visible (vital on forms
with many children)

◆ File loaded browses

◆ Filtered locators

◆ Filtered locators using “Contains”

◆ Print button

◆ Non-keyed sort orders

122 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

◆ Ability to switch between multiple update forms (including edit-
in-place)

◆ Selected bar stays in same position when returning from update
and selected bar stays in same position when switching tabs

◆ Ability to support ‘partially filled’ browses (vital for SQL)

◆ Ability to locate to ‘current’ location when entering browse

◆ Significant reduction of ‘browse flicker’

◆ Query by Example (QBE)

In the rest of this chapter, we examine function points (application features)
and manners of implementation. Keep in mind that these techniques are not
the only way to implement the functionality, but in most cases is the easiest
and most efficient way. In addition, this chapter cannot cover every possible
application feature and is not intended as a primer for application
development. Instead, it is meant to help developers solve problems using
ABC paradigm to its fullest potential.

Browse Box Template Features

ABC Edit-in-place

The ABC templates’ Browse Box has built-in support for edit-in-place
(actually this is in the Browse Update buttons, but since they are only useful
for a Browse Box control template, we will consider them as part of the
Browse).

The BrowseUpdateButtons template provides three buttons for managing file
I/O for a BrowseBox: Insert, Change, and Delete. These three button
controls act on the records in a browse box. When pressed, the button
retrieves the selected record and invokes the respective database action for
that record.

The BrowseUpdateButtons template provide a choice of an update procedure
(recommended for files with two-way relationships) or edit-in-place updates
(recommended for lookup files--files with one-way relationships).

To implement Edit-in-place, you need only to check the Use Edit in Place
check box on the Actions tab of the Browse Update Buttons control
template.

This lets the end user update the browsed file by typing directly into the
BrowseBox list and provides a very direct, intuitive spreadsheet style of
update. You can also configure the Edit in place behavior with the Configure
Edit in place button.

CHAPTER 8 BROWSE TECHNIQUES 123

The Save option

The Configure Edit in place dialog offers the Save option for four different
keyboard actions. These options determine whether changes to an edited
record are saved or abandoned upon the following keyboard actions: TAB
key at end of row, ENTER key, up or down arrow key, focus loss (changing
focus to another control or window, typically with a mouse-click). Choose
from:

Default Save the record as defined in the BrowseClass.Ask
method.

Always Always save the record.

Never Never save the record, abandon the changes.

Prompted Ask the end user whether to save or cancel the
changes.

Remain editing options

The Configure Edit in place dialog offers the Remain editing options for
three different keyboard actions. Check these boxes to continue editing upon
the following keyboard actions: TAB key at end of row, ENTER key, up or
down arrow key. Clear the boxes to stop editing.

Retain column option

The Configure Edit in place dialog offers the Retain column option for the
up and down arrow keys only. Check this box to continue editing within the
same list box column in the new row. Clear to continue editing within the left
most editable column in the new row.

Insertion Point option

The Configure Edit in place dialog offers the Insertion Point option for initial
new record placement in the list. The droplist choices— before, after, and
append— indicate where the edit-in-place row will appear in the list when
inserting a record. Before and after indicate placement in relation to the
highlighted record, and append places the edit-in-place row at bottom of the
list.

This does not change the sort order. After insertion, the list is resorted and
the new record appears in the proper position within the sort sequence.

124 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Column Specific options

Press this button, then press the Insert button to specify the CLASS of object
to use when editing a specific list box column. The Column Specific dialog
lets you control the class (and object) the procedure uses to edit a specific
Browsebox column. You may specify your own or a third party class.

By default, the BrowseUpdateButton template generates code to use the
EditEntryClass in the ABC Library. You can also use the other edit classes or
derive your own. The Application Generator must know about the CLASS
you specify--see the Template Overview--ABC Compliant Classes section in
the Application Handbook for more information.

Adding column Specific options to a column, also adds important embed
points you can use during Edit-in-place. In the following section, we’ll use
these embed points to add hot key lookup to an entry control during Edit-in-
place.

Calling a Lookup from Edit-in-place

The EditClass (or the derived class for a column) creates a control for data
entry. In this example, we will assume that it is an ENTRY control (using the
EditEntryClass) and that the application requires lookup capabilities for that
control.

Create the Function to return the data for the lookup

First, we create a SelectState procedure (a simple browse with a Select
button) and make it a Function by adding these three things:

1. Add the Prototype and parameter as shown below:

CHAPTER 8 BROWSE TECHNIQUES 125

2. In the Control Events, ?Select, Accepted embed point, add the following
code:

LOC:StateCode=ST:StateCode

With the function created, next we’ll add the functionality to call the lookup
and save the returned value.

Implementing the lookup

The key point to remember is that the control created for edit-in-place can be
referred to as SELF.FEQ inside its object. This allows you to set its
properties without needing to know anything else about it. In this example,
we will use a Browse Box in the PEOPLE.APP example. The browse is on a
Members file and contains a State field.

By adding this column to the Column Specific list in the Edit in place
options, we get the EditInPlace::MEM:State CLASS, which is derived from
the EditEntryClass and automatically contains the following methods:

CreateControl
Init
Kill
SetAlerts and
TakeEvent

In addition, we also get embed points within all of the methods. We’ll use
these for the embedded code needed for the functionality that we want.

1. In the BrowseMembers procedure, add the MEM:State field to the
Column Specific list.

126 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Next, we’ll add the code to alert the F10 key to perform the lookup.

2. In the Local Objects, EditInPlace::MEM:State, Init embed (after the
parent call) embed point, add the following code:
SELF.FEQ{PROP:Alrt,50}=F10Key

Notice the second parameter (50). The PROP:Alrt property is an array
and the second parameter specifies the offset. The ABC Library
automatically adds alerts for the following (in ABEIP.CLW):

 SELF.Feq{PROP:Alrt,1} = TabKey
 SELF.Feq{PROP:Alrt,2} = ShiftTab
 SELF.Feq{PROP:Alrt,3} = EnterKey
 SELF.Feq{PROP:Alrt,4} = EscKey
 SELF.Feq{PROP:Alrt,5} = DownKey
 SELF.Feq{PROP:Alrt,6} = UpKey

These are added to allow navigation between columns in edit-in-place
mode. If we don’t provide the second parameter, the alert is added to the
first offset, overwriting the alert for the TabKey. We’ll use a high number
of 50 to allow for any additional alerts that may appear in an interim
update to Clarion.

Next, we add the code to call the lookup procedure when the F10 key is
pressed.

CHAPTER 8 BROWSE TECHNIQUES 127

2. In the Local Objects, EditInPlace::MEM:State, Init embed (after the
parent call) embed point add the following code:
IF EVENT = EVENT:AlertKey AND KEYCODE() = F10Key
GlobalRequest=SelectRecord !to enable the Select button

 SelectStates(Queue:Browse:1.MEM:State) !call the lookup
PUT(Queue:Browse:1) !put to the queue
DISPLAY()

END

Combining Edit-in-place and an Update procedure

At times, an application might want two (or more) methods to update a
record in a browse. For example, you might want edit-in-place for simple
edits and for adds (and more detailed updates), you would want an update
form.

The ABC libraries allow you to add this functionality easily.

First, let’s examine what a Browse Procedure does when the user calls for an
update. It calls a method named something like BRW1.ThisWindow.Run.
This method takes a number as a parameter. The number is the value of the
BRW1.AskProcedure property. In other words, if you enable Edit-In-Place
and specify an update procedure, you have two-thirds of the work done. Set
the BRW1.AskProcedure Property to 0 (zero) and you have Edit-in-Place;
Set it to 1 (One) and you call your update procedure.

128 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Once again, we’ll use the PEOPLE.APP example to demonstrate the
technique.

1. Select the BrowsePeople procedure, and press the Properties button.

2. In the UpdateButton section of the Procedure Properties window, check
the Use Edit in Place box. Notice that an update procedure is already
specified. Make sure to leave that procedure named!

3. Embed the following code to set the default update action to call the
form. In the Local Objects, This Window, Init ,Code embed point after
the Enter Procedure Scope priority label:
BRW1:AskProcedure = 1

4. Embed the code to set the action of a double-click to use edit-in-place. In
the Local Objects, BRW1, TakeKey , Code embed point before the Parent
Call priority label embed point embed the following code:
IF RECORDS(SELF.ListQueue) AND KEYCODE() = MouseLeft2
 BRW1.AskProcedure=0
END

CHAPTER 8 BROWSE TECHNIQUES 129

5. Finally, we will embed the code to set the action back after an edit
(either from a form or from an edit-in-place). In the Local Objects,
BRW1, Ask, Code embed point before the Parent Call label, embed the
following code:
BRW1.AskProcedure = 1

This is important. It ensures the value is the same as when you started. I
like to think of this type of code as “If you turn the light on when you
enter a room, be sure to turn it off when you leave.”

6. Compile and run the application. Call the browse procedure and notice
the behavior—a double-click gets you edit-in-place and any other
method of calling an update gets you the form.

This gives us two alternatives. However, the ABC templates allow us to add
more possibilities easily. We know that the AskProcedure property can have
a value of 0 or 1. What if we want more possibilities?

Let’s look at the second ThisWindow.Run PROCEDURE (the one with two
parameters). Notice it takes a USHORT parameter named Number and a
BYTE named Request. The number parameter it receives is the value of the
AskProcedure. With this knowledge, we can easily add a third “update”
procedure—this one a record viewer instead of a record update procedure.

1. First, create a procedure using the Window Template. Define the
WINDOW as an MDI child, and populate all the fields as STRING
controls. Let’s call the procedure—ViewPeople.

130 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

2. Select the BrowsePeople procedure and press Properties.

3. Press the Procedures button and select the ViewPeople procedure. This
adds the procedure to the local MAP.

4. Next, we will add a few buttons the window. Press the Window Button to
call the Window Formatter.

5. Populate a button with the following properties:

Text: ‘View’
USE: ?ViewButton

6. Double-click on the button (&View) and embed the following code in
the Accepted Embed point.
BRW1.AskProcedure = 2
POST(Event:Accepted,?Change:2)

7. Now to get the multiple procedures to work, we are going to modify the
ThisWindow.Run method.

Let’s use the Embeditor for this one.

8. Close the Window Formatter and the Procedure Properties window,
right-click on the BrowsePeople procedure and select Source.

9. Locate the second ThisWindow.Run PROCEDURE. This is the one with
the parameters.

Let’s examine the code:
ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request)
ReturnValue BYTE,AUTO
! Start of “WindowManager Method Data Section”
! [Priority 5000]
! End of “WindowManager Method Data Section”
 CODE
! Start of “WindowManager Method Executable Code Section”
! [Priority 2500]
 ReturnValue = PARENT.Run(Number,Request)
! [Priority 6000]
 GlobalRequest = Request
 Updatepeople
 ReturnValue = GlobalResponse
! [Priority 8500]
! End of “WindowManager Method Executable Code Section”
 RETURN ReturnValue

Now let’s modify it so it looks like this:
ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request)
ReturnValue BYTE,AUTO
! Start of “WindowManager Method Data Section”
! [Priority 5000]
! End of “WindowManager Method Data Section”
 CODE
! Start of “WindowManager Method Executable Code Section”
! [Priority 2500]
 ReturnValue = PARENT.Run(Number,Request)
! [Priority 6000]
 GlobalRequest = Request

CHAPTER 8 BROWSE TECHNIQUES 131

 EXECUTE Number
 Updatepeople
 Viewpeople
 END
 ReturnValue = GlobalResponse
 RETURN ReturnValue
 !next 4 lines of code never execute
 GlobalRequest = Request
 Updatepeople
 ReturnValue = GlobalResponse
! [Priority 8500]
! End of “WindowManager Method Executable Code Section”
 RETURN ReturnValue

This now allows us to have an alternate update procedure! Using this
technique, you can have many update procedures. Imagine the
possibilities:

• different procedures for different users

• different procedures for different security levels

• different procedures based on whether an application is running
locally or over the Internet using Clarion Internet Connect

• the possibilities are endless!

132 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

CHAPTER 9 REPORT AND PROCESS TECHNIQUES 133

9 - REPORT AND PROCESS TECHNIQUES

Introduction
This chapter explores the enhancements to the built-in Report and Process
functionality in Clarion. These two classes work closely together to achieve
their results.

Note: The Application Handbook has complete information and
example code for both of the above ABC Classes.

Overview

Reports and Processes are intimately linked in so far as the Report template
uses the process class to provide sequential file reads. This interdependence
amongst the classes is the key to the power and versatility of the ABCs.

One of the keys to understanding how the new report and process templates
work lies in the Progress window. In the Legacy templates the progress
window was hard-coded into the template, and therefore not editable from
the IDE. This is no longer the case; the developer has full control of the
progress window with the ABC templates, and the Progress window now
drives the procedure.

134 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Processes & Reports
Because of the incorporation of a process object in the report object, the
common functionality will be explored here.

The Progress window

Both the Report template and the Process template utilize a WindowManager
object to run the Report and Process objects. The WindowManager object also
provides user feedback in the form of a progress bar. This Progress window
is completely configurable from the IDE.

The mechanism employed by the templates to run the process and report
objects from the window object is to call the respective Init methods from
the WindowManager Init method.

Customization

The two primary areas within the IDE used for modifying the progress
window are the Window Formatter and the Report/Process Properties button
on the Procedure properties window.

The Progress window is editable like any other procedure window in the
Window Formatter.

The Template interface provided by the Report/Process Properties button
allows access to specific programmatic and appearance functionality.

The Procedure properties window also provides Progress window
customization in the form of a Window Message entry field. The text placed in
this entry field is displayed in a STRING on the Progress Window above the
Progress bar .

Progress bar functionality can be manipulated by overriding the record count
or manually setting the progress bar limits in the Report/Process Properties
dialog. This is usually unnecessary due to the ability of ProcessClass to

CHAPTER 9 REPORT AND PROCESS TECHNIQUES 135

determine the exact number of records. However, this does become
important when filtering is used.

Pause and Go

A report or a process can be paused by the end user in the middle of its
operation if the Pause Button control template is added to the Progress
Window.

This control template provides some very powerful functionality. A report or
process can be initiated in a paused state to allow for user input. The
displayed message can also be edited directly on the Action tab of the Button
properties.

136 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Child file processing

Child file processing has been made easier with the addition of the Report
Child File extension template. This template allows for reads of parent and
child files with a simple Extension template interface.

The template handles the retrieval of the child records, and places them into
the specified band for a report procedure. The Detail dropdown list is disabled
if the procedure is just a process.

TakeRecord method

The TakeRecord method in the ThisProcess object is the key to custom file
handling in processes and reports. The TakeRecord method is called for every
record retrieved, so the programmer has an opportunity to provide any file
handling not available through the template interface. Place your custom
code before the Parent call for best results.

Sorting

The ad hoc sorting abilities now inherent in Clarion Browse objects extends
to processes and reports. To add a sort order that does not exist in a key
simply navigate to the Report Properties dialog.

CHAPTER 9 REPORT AND PROCESS TECHNIQUES 137

In the Additional Sort Fields entry field enter the fields, separated by commas, in
the order in which you want the list sorted. The list will be sorted by key (if
any) and then the additional sort fields.

Joins

Inner and custom JOINs are now definable from within the IDE when using
the ABC templates. To set the JOIN, highlight the secondary file in the file
Schematic of the desired procedure, and press the Edit button.

The VIEW structure defaults to a "left outer join," where all records for the
VIEW's primary file are retrieved whether the secondary file named in the

138 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

JOIN structure contains any related records or not. Specifying the INNER
attribute on the JOIN creates an "inner join" so that only those primary file
records with related secondary file records are retrieved. Inner joins are
normally more efficient than outer joins.

Custom and inner JOINs are now easily accomplished without any
embedded code.

CHAPTER 9 REPORT AND PROCESS TECHNIQUES 139

Just Reports
The following topics are specific to reports.

The ABC Print Previewer

The Print Previewer is now controlled by a Clarion object, The PrintPreview
Class, which means better functionality and flexibility. Similar in appearance
to the Print Previewer found in the Legacy Templates, this Previewer comes
with some powerful built-in functionality.

Pages to print

The Previewer provides a menu item under File ➤ Pages to Print... that calls
the Pages to Print dialog at runtime.

The default value is 1-n, where n is equal to the total number of pages in the
report. Individual pages can be printed by separating page numbers by
commas. A range of pages to print can be specified by separating the first
page number to print and the last page number to print by a dash (-).
Combinations of individual pages and ranges of pages are allowed.

PagesToPrint is also the label of the property that holds the value in the Pages to
Print.... dialog. This property can be preset before the Previewer is opened if
you know that your end user will want to view a specific page, i.e. the last
page of a report. To accomplish this, embed the following line of code in the
Previewer.Open method of the report procedure.

Self.PagesToPrint = RECORDS(ImageQueue)

This sets the Previewer object to only display and print the last page of the
report. The ImageQueue property is a reference to a queue containing the file
names of the .WMF files created by the report which will be sent to the
printer and/or previewed by the end user.

To set the Previewer object to display that page when it OPENs you must
embed the following line of code in the Previewer.Display method before the
Parent call:

InitCurrentPage = Records(ImageQueue)

InitCurrentPage is the label of a parameter passed to the Display method that
indicates the page to display when the Previewer opens.

140 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

Conditional previewer

The configurablility of objects is the primary benefit of Object Oriented
Programming. This is most evident when setting a single property and
achieving the desired behavior of the object. If you do not want to provide
the Print Previewer to your end users, simply set the SkipPreview property to
TRUE in the Open method of the ThisReport object..

SELF.SkipPreview = TRUE

This can also be combined with a conditional statement allowing for
maximum runtime flexibility.

Date and Time

Printing the Date on a report is now as easy as placing a control template.
The Report Date Stamp template is available to populate on reports, and is
easily configurable through the template interface.

The Format picture is editable, and options are available for utilizing the
System clock or a variable containing the desired date.

CHAPTER 9 REPORT AND PROCESS TECHNIQUES 141

The Report Time Stamp template is also available providing a similar
interface for displaying the time the report was created.

Single record printing

The ABCs contain Templates that enable a button on a Browse procedure to
print the highlighted record. To incorporate this functionality, follow these
steps:

1. Populate the Browse Print Button control template on the desired browse
procedure.

2. Choose the desired report procedure from the Print Button Drop List on the
Actions tab of the BrowsePrint button.

142 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

3. Populate the Extend Progress Window extension template on the chosen
report procedure.

4. In the Single Shot group box make sure the Single Record box is checked.
This report procedure will now only print a single record.

These four steps are \all that is required to set up a Print Record button.

 INDEX 143

Index

Symbols

.DLL ... 108

.WMF ... 139

A

ABC Development Environment .. 47
ABC Embed Points .. 51
ABC Embed Standard ... 55
ABC Embedding Methodology .. 51
ABC Translator Class ... 83
Acknowledgments .. 11
Adding and using your own error messages 73
Additional Sort Fields ... 137
Altering an Error Message for a Single Procedure 75
Altering the Severity of an Error Message 73
Altering the Text of an ABC Error Message 72
Application Conversion Process .. 22
Application Converter .. 21
Automatically find parent controls .. 116

B

Benefits of ABC templates ... 16
Benefits of Clarion Objects .. 14
Browse Print Button (template) .. 141
buffer management .. 93
BUFFER statement .. 99
BufferedPairsClass .. 92
business rules .. 98

C

Changing the Presentation of Error Messages 75
Clarion object, definition .. 14
Classes, defined .. 48
Conversion Hints and Messages ... 27
Conversion Options ... 25
Conversion, Options after .. 37
Conversion, reasons for ... 16
Conversion Rules ... 24

D

Data Integrity ... 101
Data validation ... 98
Defer opening files until accessed 103, 104
Derivation, in IDE ... 60
DLL .. 108
DOCKABLE ... 82
Don’t Alter Controls .. 111

E

Edit-in-place ... 121
Embed Point, defined .. 50
Embed point, finding .. 62
Embed point, need for ... 62
Embed Standard, ABC .. 55
Embed Tree .. 53
Enclose RI code in transaction frame 101
Error Checking While in Stand-Alone Mode 76
Error Handling Techniques .. 71
ErrorClass .. 94
Extend Progress Window (template) 142
EXTERNAL .. 108

F

fat fetches .. 99
file sharing .. 103, 104, 107
Foreign Key .. 97

G

Getting Started Tutorials .. 13
Getting Started with ABC ... 19
Global Preservation ... 81

H

Horizontal Positional Strategy .. 115
Horizontal Resize Strategy .. 114
How Template Code is Customized when using the ABC 50
How the ABC Templates generate Clarion Objects 50
How to Use this Handbook .. 10

I

ImageQueue (property) ... 139
Inheritance, defined ... 48
INI File Management ... 79
Inner JOIN .. 137

144 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

J

JOINs ... 137

K

Key ABC issues covered .. 7

L

LazyOpen ... 103, 104
Legacy Embed Points .. 51
Legacy Embedding Methodology .. 51
Legacy Embeds, Mapping ... 39
Legacy language replacements ... 37
Legacy Templates, Compatibility ... 21

M

Macro Substitution
TranslatorClass ... 117

Making Your Own Conversion Rules 29
Mapping Legacy Embeds to the ABC equivalent 39
Maximum Height .. 113
Maximum Width ... 112
MEMBER ... 108
Methods, defined ... 48
Minimum Height ... 112
Minimum Width .. 112
Minimum Window Size ... 112

N

Naming Conventions ... 78

O

Object, defined ... 48
Optimize Moves ... 116
Optimize Redraws .. 116
Override Control Strategies ... 113

P

PagesToPrint (property) ... 139
Pause Button ... 135
Primary Key ... 97
Print Button .. 141
Print Preview .. 139
Priorities ... 59
Priority .. 53
Process .. 133
Process template

RI constraints .. 102
Programming with Objects in Clarion 50

Progress bar .. 134
Progress Window ... 134
Property, defined .. 48

Q

Quick-Scan Records ... 105, 106

R

read-ahead buffer .. 99
Referential Integrity .. 101
referential integrity

enforcement of .. 91
Referential Integrity (RI) ... 97
Relational Database design ... 97
RelationManagerClass .. 91
Report Child File (template) ... 136
Report Date Stamp (template) ... 140
Report Time Stamp (template) .. 141
Reports .. 133
Resize .. 111
Resize Strategy .. 111
resize strategy

for a single control .. 113, 114
resize windows ... 110
Resizer Configuration Options ... 116
RI constraints

Process template .. 102

S

sharing files ... 103, 104
SkipPreview (property) .. 140
Spread ... 111
Stored Procedures ... 98
Surface ... 111

WindowResizeClass ... 110

T

TakeRecord (method) .. 136
Techniques

Adding and using your own error messages 73
Altering an Error Message for a Single Procedure (......... 75
Altering the Severity of an Error Message 73
Altering the Text of an ABC Error Message 72
Changing the Presentation of Error Messages 75
Error Checking While in Stand-Alone Mode 76
Error handling ... 71

Template
Browse Print Button .. 141
Extend Progress Window .. 142

 INDEX 145

Pause Button .. 135
Report Child File ... 136
Report Date Stamp ... 140
Report Time Stamp ... 141

THREAD .. 107
TranslatorClass .. 109

macros .. 117
Triggers .. 98

U

Use RI constraints on action .. 102
Using the Embeditor .. 58

V

validation, data ... 98
Vertical Positional Strategy .. 115
Vertical Resize Strategy ... 114

W

What You’ll Find in this Book .. 9
Why convert to ABC? ... 16
Window Message .. 134
WindowResize ... 110
WindowResizeClass .. 109
WMF .. 139

146 LEARNING YOUR ABC S - MAKING A SMOOTH TRANSISTION FROM LEGACY TO ABC

	Preface: A New Car
	1 - Introduction
	Before We Begin - All in Good Fun
	What You'll Find in this Book
	How to Use this Handbook
	Acknowledgments

	2 - Learning the ABC Development Model
	Preface
	The New ABC Templates
	The Benefits of Clarion Objects (over Legacy)
	Why Bother with Conversion?
	Leaving Legacy and Getting Started

	3 - Conversion Tools
	Tools to Port Legacy Applications to ABC
	Application Converter
	The ABC Templates are (mostly) Backward Compatible
	Application Conversion
	Conversion Hints and Messages
	Other Issues
	Making Your Own Rules
	After Conversion: A little clean up
	Mapping Legacy Embeds to the ABC equivalent

	4 - The ABC Development Environment
	The Abstract View
	Terminology Review
	Clarion Objects

	Programming with Objects in Clarion
	Step 1 - How the ABC Templates generate Clarion Objects
	Step 2 - How Template Code is Customized when using the ABC Templates
	What is an Embed Point?

	The Concrete View
	Source Embeds in the ABC IDE
	Embed Tree
	Using the Embeditor
	Derivation - more support through the IDE
	How do I find an embed point?
	Looking at Generated Source

	5 - General Application Techniques
	Introduction
	Error Handling (The ABC Error Class)
	Naming Conventions
	The Local Map
	INI File Management with ABC
	ABC Based Toolbars
	The power of the ABC Translator Class
	Popup Menus

	6 - Data and File Access Techniques
	Data and File Access
	Introduction
	Overview
	ABC FileManager, RelationManager, BufferedPairsClass, ErrorClass
	FieldPairsClass Concepts
	Files, ABCs, and Legacy Applications
	New ABC File Handling Capability
	Advanced References

	7 - Window and Control Techniques
	Introduction
	Overview

	Resizer
	The Resizer - Overview
	WindowResize

	Translator
	Multi-Language Support - Overview

	8 - Browse Procedure Techniques
	Introduction
	Overview
	Browse Box Template Features
	Calling a Lookup from Edit-in-place
	Combining Edit-in-place and an Update procedure

	9 - Report and Process Techniques
	Introduction
	Overview

	Processes & Reports
	The Progress window
	Pause and Go
	Child file processing
	TakeRecord method
	Sorting
	Joins

	Just Reports
	The ABC Print Previewer
	Date and Time
	Single record printing

	Index

