
The Power of SQL at your fingertips!

Version 6.000

Copyright © 2003 Icetips Software

Icetips Cowboy
SQL Templates

User's Guide

Template Reference

Class Reference

 2

 Icetips Cowboy SQL

TTaabbllee ooff ccoonntteennttss
TABLE OF CONTENTS 2

WELCOME 7

INTRODUCTION 8

DEMO APPLICATIONS 9

INSTALLATION 10

UPGRADING FROM EARLIER VERSIONS 11

ADDING THE SQL TEMPLATES FOR THE FIRST TIME 12

REGISTERING THE TEMPLATE 12

CREATING A SQL BROWSE 12

USING A REGULAR WINDOW PROCEDURE 12

USING THE PROCEDURE TEMPLATE 13

CONTROL TEMPLATES 14

ICETIPS SQL BROWSE 14

MAIN WINDOW 14

BROWSE BOX BEHAVIOR 15

General 15

Alertkey 15

Column swapping 15

Save browse format 15

Use ABC Toolbar 16

Greenbar 16

Default Sort 17

Record Tagging 17

Visual Indicators 17

ClarioNet Alertkey 18

Filter 18

Global filter/range limit 18

Column filter/range limit 18

Filter scope setting 19

Sort 20

 3

 Icetips Cowboy SQL

Sort column color 20

Forced sorts 20

Suppress sorting 21

Join 21

Synchronize child 21

Synchronize Multi child 21

WHERE clause 22

Force INNER 23

Data Access 23

Hot fields 23

Fill on demand 23

Stored procedures 23

Function fields 24

Extended SQL 24

After SELECT before FROM 24

After FROM before WHERE 24

After WHERE before ORDER BY 25

After ORDER BY 25

Replace Everything 25

Replace ORDER BY 25

Fetch on select 25

Smart buffering 25

Page size 25

Pages behind 25

Pages ahead 26

Timeout 26

Reset Fields 26

Active Invisible 26

Variables 26

Force Use of the - primary- file and related files 27

Colors 28

Icons 28

Styles 28

Tooltips 29

Classes 29

ICETIPS SOFTWARE ONLINE SUPPORT I-SOS 29

 4

 Icetips Cowboy SQL

ICETIPS SQL BROWSE LOCATOR AND CCS SQL BROWSE LOCATOR 30

SHARED LOCATOR 30

PROGRESSIVE LOCATOR 30

DATES IN LOCATORS 30

ICETIPS SQL UPDATE BUTTONS 32

UPDATE PROCEDURE 32

Selecting update procedure 32

Popup menu 32

Hotkeys 32

INSERT OPTIONS 33

Locate and Isolate 33

Suppress Clear 33

Field priming 34

ICETIPS SQL SELECT BUTTON 35

ICETIPS SQL CANCEL BUTTON 35

ICETIPS SQL CLOSE BUTTON 35

DROP LIST OF SORT ORDERS 36

GLOBAL EXTENSION TEMPLATES 37

GET USER NAME FROM NETWORK 37

USE DEBUGGING CLASSES 37

GLOBAL OPTIONS 37

PROCEDURE EXTENSION TEMPLATES 38

NULL FIELDS BEFORE ADDING RECORD 38

STORE SELECT STATEMENT 38

WEB SIZE EXTENSION 38

SECURITY PAGE SETUP 38

ROUTINE DECLARATION 38

CALCULATE MONTHLY LOAN PAYMENT 38

RESTORE CHILD AFTER CANCEL 38

CODE AND WORKING EXAMPLES 39

RESET BROWSE BASED ON VALUE FROM A DROPDOWN 39

CHILD BROWSE ON PARENT FORM 40

SYNCHRONIZING MULTIPLE CHILD BROWSES 41

 5

 Icetips Cowboy SQL

FILTER USING AN OPTION AND RADIO BUTTONS 43

CLASS REFERENCE 44

CCSSQL1 CLASS 44

CLASS PROPERTIES 44

CLASS METHODS 53

CCSBUTTONS CLASS 81

CLASS PROPERTIES 81

CLASS METHODS 83

CCSSIZES CLASS 85

CLASS METHODS 85

CCSLOCMANAGER CLASS 86

CLASS PROPERTIES 86

CLASS METHODS 86

CCSTOOLBARLISTBOXCLASS CLASS 88

CLASS PROPERTIES 88

CLASS METHODS 88

COMPATIBILITY AND TECHNICAL ISSUES 89

TECHNICAL SUPPORT 90

EMAIL 90

NEWSGROUPS 90

INTERNET BULLETIN BOARD 90

ICETIPS SOFTWARE ONLINE SUPPORT, I-SOS 90

INSTALLED FILES 91

LAST MINUTE CHANGES 92

DEFAULT SORT ORDER 92

SORT ORDER 92

LIMITATIONS 92

CHANGES FROM PREVIOUS VERSION 93

VERSION 6.000 FINAL RELEASE 93

VERSION 6.000 BETA B, MAY 5, 2003 95

KNOWN ISSUES IN 6.0, BETA B 95

CHANGES FROM BETA A 95

 6

 Icetips Cowboy SQL

VERSION 6.000 BETA A, FEBRUARY 20, 2003 96

CHANGES FROM 5.5 96

 7

 Icetips Cowboy SQL

WWeellccoommee
Welcome to the Icetips Cowboy SQL templates!

This is our first release of those templates which we aquired from it's author Andy Stapleton in
July 2002. We have added a lot of new features and improvements in this release.

Please read through this manual as there are so many changes that we have made all over in the
templates and while the overall look and feel of the templates hasn't changed, lot of the
internals have changed, or more precicely things have been added.

For your convenience, we have put an image on the left margin where we discuss new or
improved features of the SQL templates.

This documenation will not teach you how to use SQL, that is outside the scope of this project,
but it will teach you how to use the SQL templates and get familiar with working with SQL
databases using our templates. We have a special section on our website that is dedicated to SQL
and nothing else and it has a lot of SQL related resources and links. Installed with the SQL
templates is a PDF file with a series of articles written by Dan Pressnell which we have got his
kind permission to use and install with our product. Dan's articles are a goldmine for anyone who
wants to explore SQL in depth. He has also written classes that access the ODBC drivers directly
using the standard ODBC API.

This image
indicates a
new item!

 8

 Icetips Cowboy SQL

IInnttrroodduuccttiioonn
The Icetips Cowboy SQL templates have been around for about 8 years or since 1996. They came
out first for Clarion templates and later on for the ABC chain. In July 2002, Icetips Software took
the templates over from their author, Andy Stapleton and since then we have been working on
various new features and improvements. In this manual, we will usually refer to the Icetips
Cowboy SQL templates as the "SQL templates"

The heart of the Icetips SQL templates are a browse control template that replaces ABC browses.
This means that in existing applications, the browse procedures need to be re-created using the
SQL templates. Also included are Locator template which adds a filtering locator to the browse,
update button template which adds the usual update buttons, cancel and close control
templates. Together these templates make up the SQL template product, along with several
class files, which are detailed in the Class Reference at the end of this manual.

The SQL templates construct SQL statements, based on the developer settings, that are passed on
to the Clarion View structure that is used for the browse. This SQL statement construction comes
in two flavours, full, which is turned on by checking the "Force Inner" option, and partial, which
is the default and is turned on by unchecking the "Force Inner" option. The difference is that
with the full construction, the entire Select statement is built by the SQL templates and passed
on to the Clarion View with Prop:SQL. With the partial construction, the Order by and Where
clauses are built and passed to the Clarion View with Prop:SQLOrder and Prop:SQLFilter
respectively. By forcing the inner joins and thus the Prop:SQL construction, the templates can
also access SQL functions to retrieve data. This is not enabled if the inner joins are not forced.

The SQL Update buttons have pretty much the same functionality as in any other browse
template - they allow the user to insert, change or delete a record from the database table. In
this version the developer can optionally enable Popup menu and alert any hotkeys they want for
the buttons as well as define multiple hotkeys for various actions such as insert, change, delete
and select. Also new in this version are options to suppress the Clear on the table record done by
the Insert method and also do pre- and post-priming of the record. The Pre-priming is done
before the record is added to the database. This can be handy to set values on fields that
enforce Referential Integrity to other tables, for example lookup tables. The Post-priming is
done after the record has been added and in essense overwrites what the Pre-priming did. This
can be used to NULL out fields that enforce Referential Integrity and force the user to select a
value from lookup tables etc. Both the Pre- and Post-priming allows for a value or variable be
used, the field set to NULL or a Clarion function can be called to assign values to the field. These
options are only available if Suppress Clear is checked and so is Clear record, which is mandatory
to use with Suppress Clear as otherwise you risk have the values of the currently active record be
written into the new record!

The SQL Select button is like any other Select button, it selects the currently active row in the
browse and the values active in the browse are available where the browse was called from.

There are TWO almost identical Locator control templates, one is the original Locator control,
but the new one is very similar but works indpendently on multiple browses and can not be
shared, i.e. the locator is tied to the browse it locates on. Many users find it confusing to have a
shared locator for multiple browses like the original locator did.

 9

 Icetips Cowboy SQL

DDeemmoo AApppplliiccaattiioonnss
This is currently under construction - may not be distributed with the initial release. In that case
please check with us through the Icetips Software Online Support program for updates.

 10

 Icetips Cowboy SQL

IInnssttaallllaattiioonn
The Icetips Cowboy SQL templates use an installation program created with LinderSoft's
SetupBuilder 4.03. This install is simple to run. It has two layers of authentication using
installation password and serial number. Both are required during the install and are supplied via
email from our online store when the product is purchased.

If you lose this information, you
can always send us an email to
support@icetips.com, requesting
the installation information or log
into the Icetips Software Online
Support Center.

When you purchase our software,
you will get a user name and
generated password which you
can use to log into our Support
Center. You can query our
database for your product
information including download
and installation information and
our Center will send them to you
via the email address that you
supplied when you purchased.

It is up to you to keep your user
profile up to date and once you
have logged into our system you
can change your password to
something more appropriate.

You MUST enter the Name,
Company and Serial number
exactly as they are in your
registration email that you will
get when you complete the
purchase. These fields are case
sensitive and if not entered as
expected the install will not work.

The installation will attempt to
register the template. If it fails,
then you need to register the
template manually.

At the end of the installation our
Post-Install program runs and does
some file cleanup and

housekeeping. Among other things it checks the Clarion Redirection file to make sure that paths
that are needed by the product are appropriate so that the Clarion environment can find the
files, such as template files, images, icons, etc.

Please let us know immediately if you have problems during the install so we can take a look at it
and fix it to prevent other users from having problems with the installation.

Enter user information in Installation program

Entering Installation password in Installation program

 11

 Icetips Cowboy SQL

UUppggrraaddiinngg ffrroomm eeaarrlliieerr vveerrssiioonnss
This new version of the SQL templates is a major upgrade. We have not found any migration
problems from the earlier version, but urge customers who are upgrading to take precautions in
case they run into some migration issues!

We strongly recommend that you read through this manual to familiarize yourself with the
changes and improvements and what impact they may have on your existing applications.

Please read!

Even though we do not expect any problems at all with this new version, we do however
recommend that if you are upgrading from an earlier version and you take the following
precautions, before installing the new version of the SQL templates:

1. Make a backup of applications that use the original version of the SQL templates

2. Make a backup of the original templates and classes - see instructions below

We recommend that you uninstall earlier versions of the Icetips Cowboy SQL templates. If you do
not have an uninstall option, then locate the Ccsabc.tpl and Ccsabcex.tpw files which will
probably be in your Template directory, i.e. C:\C55\Template directory if your Clarion 5.5
installation is in C:\C55 directory.

We encourage you to make a backup copy of the old version in case you find some problems with
the new one and want to revert to the previous version. Then please also include all CCS*.* files
in the LibSrc directory:

CCSBUTNS.CLW
CCSTOOLB.CLW
CCSLOCAT.CLW
CCSSQL1.CLW
CCSSIZES.CLW
CCSLOCAT.INC
CCSSQL1.INC
CCSBUTNS.INC
CCSTOOLB.INC
CCSSIZES.INC

Put the files in a safe location and then delete them from the LibSrc directory.

The new installation will put the template files into \3rdParty\Template subdirectory from your
Clarion 5.5 or Clarion 6.0 installation root directory. The class files (*.clw and *.inc files) will still
be placed into the \LibSrc directory as they were in the older version.

If you experience any migration problems, we would appreciate if you would let us know as soon
as possible via email to support@icetips.com so we can find the cause and fix the problem.

On page 93 there is a fairly comprehensive list over all of the changes that have been made since
version 5.5.

 12

 Icetips Cowboy SQL

AAddddiinngg tthhee SSQQLL tteemmppllaatteess ffoorr tthhee ffiirrsstt ttiimmee

RReeggiisstteerriinngg tthhee tteemmppllaattee
Normally the installation program will register the template for you during the installation. If
you choose not to have it do that or the installation program fails in registering the template, you
need to register the template manually.

To register the template manually, open the Clarion Integrated Development Environment (IDE)
and select "Setup|Template Registry" from the main menu. Then click on the [Register] button
and navigate to the installation template directory (i.e. C:\C55\3rdParty\Template or
C:\Clarion6\3rdParty\Template) and select the Ccsabc.tpl file. Clarion will now register the
template chain and you are ready to start using the template.

CCrreeaattiinngg aa SSQQLL bbrroowwssee
There are two ways to create a SQL browse procedure. You can either create a window
procedure and then drop the SQL browse control on it or you can use one of the SQL Browse
procedure templates. Currently there are two such templates, "Icetips SQL Browse with update
buttons" and "SQL Only browse with update" The first is a slightly modified version of the second
which is the procedure template that was in previous version(s).

Using a regular Window procedure

To create a SQL browse window, you first create a
window procedure in Clarion. From the main menu
in the Clarion IDE, select "Procedure|New" or hit the
Insert key on the keyboard. Once the "New
Procedure" window comes up, type in the name for
the procedure, in our example we will use
TestSQLBrowse as the procedure name. Click the OK
button on the "New Procedure" window and the

"Select Procedure Type"
window will come up. Select
the "Templates" tab, make
sure you are not on the
"Defaults" tab as it has
different entries, and then
select the "Window - Generic
Window Handler" from the
"ABC - Application Builder
Class Templates" Class. This
will create a completely empty
Window procedure.

To create the window so you
can start populating the
control templates and other
controls that need to be there,
click on the [Window] button
and a "New Structure" window
will come up. Select the "MDI

 13

 Icetips Cowboy SQL

Child Window" entry and click the [OK] button. Now you have a window to work with. Resize the
window in the window formatter so that it is about 400 dialog units wide and 200 dialog units
tall.

Once the window is created, you can add the browse control template. Click the [Control
Template] button or select "Populate|Control Template" from the Window Formatter menu.
Then select the SQLBrowseNL from the "CCSAbc - Icetips Cowboy SQL Templates" class and select
the upper left corner where you want to drop the listbox control.

By default the listbox control is not populated with any fields from the database. Right click on
the listbox control and select "List Box Format..." from the popup menu to open up the listbox
formatter. Then add the columns that you want the browse to show.

This is all very similar to adding a regular ABC browse to a window.

Once the browse is in place, you can add update buttons, select button as well as locator. If you
have multiple browses on the same window, you will be prompted for which listbox you want to
add the additional control templates, same as if you have multiple ABC browses on the same
window.

Using the Procedure template

There are two very similar
procedure templates provided
with this version of the SQL
templates. One includes
update buttons and select
button and is identical to the
original procedure template,
but the other includes update
buttons only and is slightly
modified version of the original
SQL procedure template. Try
them both and see how they
work for you.

The new
procedure is
simple, yet
contains what
needs to be
on the
browse. Now
you can add
fields to it and
start setting it
all up. For
more
information
on the
templates,
refer to the
Control
Template
section.

Selecting the Icetips SQL Browse procedure template

The resulting SQL browse procedure

 14

 Icetips Cowboy SQL

CCoonnttrrooll TTeemmppllaatteess

IIcceettiippss SSQQLL BBrroowwssee
The main power of the SQL templates is stored in the "Icetips SQL Browse" control template.
This is the foundation for everything else and is required by the other control templates. This is
where all the browse functionality is set up including how it structures the Select statement sent
to the backend as well as visual appearance settings such as colors, icons and styles.

In the following documentation, we will go through each window, tab and button and explain as
well as possible what these functions do and how they will affect the generated SQL or other
controls on the window and how other controls will affect the SQL browse.

Main window

The main window for the Icetips SQL Browse control template contains the "Browse Box Behavior"
button that opens up a window with several tabs and buttons with all the options available in the
control template. The button has information both about the primary table that is used in the
listbox as well as the object name that the template uses for the particular browse and listbox.

This makes it easy to
see and remember
what class label to use
when handcoding.

In a box in the lower
part of the window the
template displays
information about the
registered owner and
the version
information, both the
version/build number
as well as the last date
it was changed. The
information you see on
this window will
probably not show the
same build/change
information as the
screenshot, but that is
normal.

There is also the
"Icetips Software Online Support" button, which will take you to another window which is
described in more detail on page 29. If you need help at any point in the templates, use this
button to open up the direct options that you have including an option to log into our online
support center for help and information.

At the top of this window as well as all other windows in these templates, is a section with our
Logo, the name of the template, our copyright notice and the name of the registered owner of
this copy of the Icetips SQL.

The main window of the Icetips SQL Browse control template

 15

 Icetips Cowboy SQL

Browse Box Behavior

When you click on this button, another window comes up with a lot of tabs and buttons on each
tab. We will go through each tab and each button on those tabs and explain what they do and
how they affect the browse box. We have skipped some buttons that only display information
and do not interact with the developer.

GENERAL

Alertkey

This allows you to specify what key to use
to trigger resorting of the browse when
you click the header with it. For rather
obvious reasons this needs to be some
mouse key combination. We have not yet
implemented a way to switch the sort
orders with the keyboard but hope to have
that possibility implemented in the next
release of the SQL templates.

Column swapping

Column swapping allows you to move the
columns from left to right or right to left
in the listbox. This makes it easy for users
to customize the browses. There are no
methods to call for this, only a property to
set and it can be set at any time if you
like. Click on the "Code example" button
to see how to turn the column swapping
on or off. You can copy/paste the code
from the text fields on the Code example
window and it will use the correct object
name based on the template instance you
are working with.

Save browse format

This allows the user to modify the columns
in the browse and when the browse
window closes, the format is saved and
then restored when the user opens the
window again. This will also save the
active sort column and restore it when the
window opens. Note that if the Default
sort column is set, it will override the sort
column, so that the browse always starts
up with the defined sort column. There
are no methods to call for this, only a
property to set and it can be set at any
time if you like. Click on the "Code
example" button to see how to turn the
Save on or off. You can copy/paste the

 16

 Icetips Cowboy SQL

code from the text fields on the Code example window and it will use the correct object name
based on the template instance you are working with.

Use ABC Toolbar

This allows the browse to use the ABC
toolbar for navigation. However, the ABC
toolbar class has problems with navigating
multiple listboxes on the same window.
This makes it less than ideal solution for
navigating records in listboxes. We do not
recommend that you use this option, but if
you only have one listbox on the window
or only want one listbox to be navigated
by the toolbar, you should not have any
problems with this option.

Greenbar

The Greenbar option in the Icetips SQL
templates is implemented directly from
JaduTech's freeware Greenbar templates.
The author, Steve Bottomley of Australia,
was so kind as to give us full permission to
integrate his template code into ours. It
allows you to set up very nice bar effects
on your listbox and even if the name
suggests green, it can be any color
combination you like. You can set the
background, forground, selected
background and selected forground as well
as conditional colors and all kinds of other
options.

For example try to set the Greenbar
Background Normal color to one of the
following values:

0B7E2ECH - pale brown
0CEFDE1H - pale green
0D2D6FFH - pale red/pink
0FEE0E4H - pale lavender
0BBFDFBH - pale yellow
0A6FBFDH - pale orange/yellow

We are not going to go into further details
on this template in this version of the
documentation, and the templates are
fairly self explanatory. You can visit Steve's website from a button on the information tab. He
has several other freeware products and example applications for Clarion.

 17

 Icetips Cowboy SQL

Default Sort

This option allows you to specify a
column as the default sort column.
When you check the "Set Default Sort
column" you can select the column that
you want to use as the default column.
Note that if you at later time remove
that column, no column will inherit the
default column.

Record Tagging

Not implemented in this version. We
expect to have record tagging
implemented in an interim release in the
fall of 2003. Please check back for
availability and check our website
regularly.

Visual Indicators

The Visual Indicators allow you to change
the sort order indicators and the sort
column indicators.

The Sort Order is by default indicated
with a + or a - in front of the text in the
column header. However you may want
to use some other characters to indicate
ascending and descending order.

The Sort Column indicators are by
default indicated by encapsulating the
column header text with < and > You
can use any other indicators you want,
but the classes only support one
character indicators for prefix and
postfix. This can be changed in code by
using the SetOrderSign and SetSortSign
methods and then call the
UpdateHeaders method to refresh the
header displays. The UpdateHeaders
method should be called if the headers
need to be changed for any reason. It
will update the class properties with the
current properties of the hederss. That
way when the sort order changes for
example, the column headers are still
correct. This also provides full support
for runtime translations of the browses.

 18

 Icetips Cowboy SQL

ClarioNet Alertkey

This option is only available if ClarioNet is being used. By default ClarioNet uses the Left Mouse
button which means it can not be used to change the sort order in the browse if it is running
under ClarioNet. Just select a different mouse combination here and you can run the application
under ClarioNet. The default key combination is AltMouseLeft.

FILTER

On this tab you can specify filters for the
entire browse or for indvidual columns.

Global filter/range limit

The Global filter is a filter that applies to
the whole browse, regardless of what
column filters may be applied. For
example if you need to filter a browse
based on a parent value, a Global filter is
what you need to use as it will filter the
browse on that value only and never show
anything else. If you need to further limit
certain columns to other values, you need
to add column filters as well.

You need to check the Filter Scope setting
to make sure that the startup scope is set
correctly.

By default the filter is quoted by the
templates. This can make it difficult to
put in clarion variables and have them
resolve properly. In verion 6.0 you can
now start the filter with an exclamation
mark and the filter will be generated
exactly like you put it in, for example:

!'MAI."CONTACT" = ' & Loc:ContactID

This will then resolve to the appropriate
filter and it is completely up to you to
make sure that this generates the correct
filter!

You can change the Global filter at any
time during the lifetime of the browse by
using the SetGlobalFilter method or the
ForceGlobalFilter which forces an
immediate refresh of the browse. You can
also use the ClearGlobalFilter method to
clear the filter.

Column filter/range limit

The Column filter applies to the browse
column that is the currently active sort

 19

 Icetips Cowboy SQL

column. For example if you only want to
show records for the state of Texas, when
the state column is the sort column, you
could use a column filter for the state
column. When the browse is sorted on the
State column, it will then only show the
records for the state of Texas.

You need to check the Filter Scope setting
to make sure that the startup scope is set
correctly.

By default the filter is quoted by the
templates. This can make it difficult to
put in clarion variables and have them
resolve properly. In verion 6.0 you can
now start the filter with an exclamation
mark and the filter will be generated
exactly like you put it in, for example:

!'MAI."CONTACT" = ' & Loc:ContactID

This will then resolve to the appropriate
filter and it is completely up to the developer to make sure that this generates the correct filter!

You can change the Column filter at any time during the lifetime of the browse by using the
SetColumnFilter method or the ForceColumnFilter which forces an immediate refresh of the
browse.

Filter scope setting

The Filter Scope setting sets the initial
filter scope for the browse, used when the
browse starts up. If you only have a global
filter, check the Global option in the Filter
Scope settings. If you only have Column
filter, check the Column option in the
Filter Scope settings. If you have both
global and column filters, check the Both
option in the Filter Scope settings.

You can change the filter scope at any
time using the SetFilterScope method. It
can take one of 4 possible values as they
are defined in the CcsSql1.inc file:

HPROP:FilNone EQUATE(1)
HPROP:FilGlobal EQUATE(2)
HPROP:FilColumn EQUATE(3)
HPROP:FilBoth EQUATE(4)

To change the filter scope setting, call the
SetFilterScope with one of these equates. For example to set both Global and Column filters,
you can use:

SQL1.SetFilterScope(HPROP:FilBoth)

 20

 Icetips Cowboy SQL

To set only a Global filter, you can use:

SQL1.SetFilterScope(HPROP: FilGlobal)

SORT

This tab has settings that apply to how the sorting options are handled in the browse.

Sort column color

The Sort column color is used to indicate
what column is the active sort column in
the browse. When a column becomes the
active sort column, the text color in that
column is changed to the color specified
here. By default it is set to COLOR:Red,
but you can set it to anything you want.
Please note that in version 6.000 the Sort
column color is overridden by the
Greenbar settings, but overrides the color settings. So make sure that you test this with the
Greenbar setting if you set the forground color using the Greenbar. Please refer to page 16 for
more information on the Greenbar settings.

Forced sorts

The Forced sorts allow you to use a
particular key or field as a sort field for
another column if the data in that column
can not be used to sort the browse, for
example if the data is from local variables,
or if the data doesn't lend itself to
intelligent sorting for whatever reason.

In version 6.000 the need to do this for
non-table fields no longer exists as we
have implemented an automatic way to
deal with this for local variables. Please
refer to the section about the Variables on
the Data Access tab on page 26 for more
information about how this new feature
works. In previous versions you would
need to add local variables to the Forced
sorts.

You can also use this to simply force a
column not to sort on it's own data but on
something else. An example could be if
you have a FirstName, LastName and FullName fields in a database. You may not want the
FullName field to sort on it's own contents, but on the LastName. In that case you can use the
Forced sort to force the FullName column to sort on the LastName.

 21

 Icetips Cowboy SQL

Suppress sorting

By adding columns to the Suppress sorting
list, you are disabling the header click
sorting on that column. If the user clicks
on the column heading, nothing happens
except if the Warn is checked, a message
will be shown to warn the user that the
column can not be sorted. This can come
in handy on columns that can not be
sorted, for example columns with local
variables representing calculated or
concatenated data. Use the Insert button
to add columns to suppress sorting on.

JOIN

This tab has options that affect how
listboxes are joined and how the Where
clause is contructed.

Synchronize child

This is used on a parent browse to synchronize a child browse so it refreshes correctly when the
parent browse is scrolled. This is the
same as setting range limits on ABC
browses to range on a single value from
the parent browse. In ABC this is always
done on the child browse, but in the SQL it
is always done on the parent browse. To
start with, check the Synchronize
checkbox to turn it on. Then click on the
Insert button to add a new
synchronization. Select the child browse
you want to synchronize from the
dropdown of available SQL browses on the
window. Then select the parent and child
fields and select if these fields are
numeric or alphanumeric. Usually these
would be system id fields. You can have
multiple browses synchronized by adding
more browses into the listbox at the
bottom of the window.

Synchronize Multi child

In some cases it is necessary to work with
primary keys with more than one component. This is most
important when dealing with some sort of replication on
the back end where publications and subscriptions are
limited to a certain ID field. In this case you need
multiple fields to synchronize the browses if the parent
primary key contains more than one field. The
Synchronize Multi child is a new option in version 6.000

 22

 Icetips Cowboy SQL

and allows you to do exactly that. However, in this initial form it is limited to synchronize only
ONE child browse! We will add the option to synchronize multiple child browses with this option
in our next release.

Please refer to the section on code samples starting on page 39 for more examples on how to
synchronize child browses with single and multi component primary keys.

WHERE clause

This options allows you to add to the built
Where clause and allows you to create
complex Where clauses. This works
together with Global filters and Column
filters as well as the Locator filters, i.e.
the where clause you add here is in
addition to all the other filters that also
affects the Where clause. This gives you
very powerful options to customize the
browses and add customized filters. You
can also do this in code by using the
SetWhereClause method.

To create a Where clause, click on the
"Expression Builder..." button and then
click on the Insert button to start adding
new fields. Specify the left and right hand
side of the assignment and the operator.
The Resolve option makes it possible for
you to put variables as the right side of the assignment and it will be generated correctly into the
resulting string. Without the Resolve option, the right field is generated as if it was an SQL field
i.e. FIL."Fieldname" but with Resolve it would be generated as FIL:FieldName. Examples:

With Resolve:

SELF.SetWhereClause('MAI."NAME" =''' & MAF:NAME & '''')

Without Resolve:

SELF.SetWhereClause('MAI."NAME" =''MAF."NAME"''')

Select the AND/OR option if you want to
add another part to the Where clause. If
this is the only part or the last one, leave
it empty. Finally select the datatype,
string or numeric. When you are back in
the main window, click on the "Update"
button to bring in the expression that you
have built. You can enter the expression
directly on the main window, but using the
Expression Builder reducing spelling and
typing errors.

 23

 Icetips Cowboy SQL

Force INNER

This is another very powerful option. With the Force INNER checked, the SQL template generate
the entire Select statement and use PROP:SQL to retrieve the data from the backend database.
With the Forced INNER you can also use
function fields to retrieve data such as
aggregate functions like SUM() or
COUNT(). Please refer to the Function
Fields options on page 24 for more
information about using functions. To turn
it on, simply check the Force INNER or you
can change this at runtime using the
SetJoinType method and set it to either
HPROP:JoinInner or HPROP:JoinOuter.

DATA ACCESS

This button holds various very powerful
settings and options among other things
hot fields, stored procedures, reset fields
and (local) variables.

Hot fields

This is identical to hot fields in
ABC/Clarion browses, i.e. fields that are
not part of the listbox, but are retrieved
from the database and are therefor part of
the Select statement. If you need fields for calculation into local fields, system ID fields for
linking child browses or whatever, this is the place to add them. Just click on the Insert button
to add hot fields.

Fill on demand

This is replaced with ActiveInvisible in version 6.000 but left in here for backward compatibility.
Please refer to the ActiveInvisible section on page 26 for further information.

Stored procedures

You can add information about stored
procedures that you have in your database
by adding them here. You can add
multiple stored procedures to your browse
and use them with the SetViewProcedure
or ForceViewProcedure methods.

A procedure ID is generated for you
automatically, but you need to specify the
procedure name and any parameters that
it needs. You can also specify the first
ORDER BY field in the stored procedure
and if the sort order is ascending or
descending.

 24

 Icetips Cowboy SQL

Function fields

Function fields can be used to put the
results of SQL functions into specified
columns in the browse. This option only
works if the Force INNER is active as then
the SQL templates build up the entire SQL
statement. Please refer to page 23 for
more information about Force INNER.

To add a function field, click on the
"Insert" button and select the column you
want to use. Then type in the SQL
function you want to call. Please note
that the database field for the column
that receives the results must have the
same datatype as the function returns.
For example if you call the Count()
function, the field data type must be an
integer data type.

Extended SQL

This is an extremely powerful option that
let's you append your own SQL statements
into the SQL generated by the SQL classes.
You have 6 options for what you can
change.

After SELECT before FROM

This appends the SQL you enter to the
SELECT statement. For example if you
add , MYF."Field3" as extened SQL and
the generated SELECT statement looks like
Select MYF."Field1", MYF."Field2" the
resulting SELECT will be: Select
MYF."Field1", MYF."Field2", MYF."Field3"
This way you can add fields into the Select
statement.

After FROM before WHERE

This appends the SQL you enter to the
FROM statement. This is handy to use to
add INNER joins without specifying the
table in the Clarion view. Example, if the
Clarion generated Select statement is
Select Namesysid, Name, Address, City,
State From Names but you want it to be
Select Namesysid, Name, Address, City, State From Names ,Orders where Namesysid =
Orders.CustSysid then you add ORDERS in "After FROM before WHERE" and add Nam.Namesysid
= Orders.CustSysid in "After WHERE before ORDER BY"

 25

 Icetips Cowboy SQL

After WHERE before ORDER BY

This appends the SQL you enter to the WHERE statement. You can use this to add fields to the
WHERE clause if needed.

After ORDER BY

This generates the SQL statement you add into the ORDER BY statement. These fields are listed
prior to other fields in ORDER BY.

Replace Everything

This replaces the generated SQL completely with what you enter, so you can build up your SQL
statement completely independent of what the templates and classes would generate. This is
only for developers who have a good understanding of SQL and how it relates to Clarion views and
browse queues.

Replace ORDER BY

This replaces the entire ORDER BY clause.

Fetch on select

This is used to force a select of the
current row from the database every time
a row is selected in the browse. Normally
this is not done to reduce network traffic.
By using this, the browse will force an
update of the currently selected record
from the database each time you select a
record by scrolling or clicking with the
mouse on the listbox.

Smart buffering

The SQL templates use the Clarion Buffer statement to set up buffers for the browse. We
discovered too late that these settings
have not been implemented in the SQL
templates, but we indent to implement
them if necessary in the next release and
are therefor documenting them here.
These settings are:

Page size

An integer constant or variable which
specifies the number of records in a single
"page" of records. The default value is 20.

Pages behind

An integer constant or variable which
specifies the number of "pages" of records
to store after they've been read. The
default value is 2.

 26

 Icetips Cowboy SQL

Pages ahead

An integer, constant or variable which specifies the number of additional "pages" of records to
read ahead of the currently displayed page. The default value is 2.

Timeout

An integer constant or variable which specifies the number of seconds the buffered records are
considered not to be obsolete in a network environment. The default value is 60 seconds.

Reset Fields

The reset fields are a new feature in
version 6.000. The reset fields take
advantage of the ABC Fieldspairs class
and the WindowComponent interface
implemented in version 6.0. You can
add any variable into the reset fields and
if the value of those variables changes,
the SQL browse will be notified and refreshed as needed. You can use local, module or global
data or you can use database fields.

Active Invisible

Active Invisible is a new feature in
version 6.000. It overrides the old "Fill
on Demand" setting. With Active
Invisible set the listbox is always active
and will refresh and refill as needed
even if it is not visible. If Active
Invisible is unchecked, the listbox is only
refreshed and refilled as needed when
the browse control is actually visible.
Unchecking Active Invisible makes
complex browse windows with many SQL
browses load faster as they do not need
to refresh the invisible browses on
startup. The default for this setting is
ON to maintain compatibility with older
browses.

Variables

This is a new option in version 6.000. If
there are non-database fields in the
browse box, they are automatically
added to the list of variables. A generic
sort column is defined and it is the first
column of the primary file that is
available in the listbox. Sorting on
variable columns is turned off by default.
By default the variable is simply assigned
to itself, and should thus not break any
existing code that uses Forced Sorts. For

 27

 Icetips Cowboy SQL

example if you have a variable called Loc:Total in your browse, version 6.000 will simply
generate this into the FillQueueField method code:

Loc:Total = Loc:Total
xValue = Loc:Total

The Generic Column Sort Field is used to
define which columns should trigger
updating what fields. This is by default
the first browse column from the primary
file. Each variable can have a sortfield
specified, but column sort is turned off by
default for the local fields. None of this
should affect existing code for local
variables. If you find cases where this
causes problem, please report it to us
immediately via email to
support@icetips.com and we will fix it
right away. Our tests have not turned up
any migration problem in this area, but
this is a new feature so it is quite possible
that it may have problems somewhere.

Assigning values to the local variables can
be done either with a direct assignment by
selecting something into the assignment
field. You can select multiple variables
and enter other information there as
expressions. You can also check the "No
Assignment" option if you want to call a
routine to assign a value to the variable.
In that case no assignment is generated,
just the code you enter into the
assignment field. For example if you check "No Assignment" and enter "Do CalculateRoutine" into
the assignment, this will be generated as:

Do CalculateRoutine

If you on the other hand uncheck the "No Assignment", that same call would be generated as:

Loc:Total = Do CalculateRoutine

Which would cause compiler error.

You can use the two GOTO buttons to open up the two embed points that can be used to
manually fill the variables. The first one goes into AddQFromBuffer method and the other goes
into the FillQueueField method.

Force Use of the - primary- file and related files

This option can be used with the LazyOpen option which can be set at global level in the ABC
templates - "Defer opening files until accessed" which you can find on the "File Control" tab of the
global properties window. By forcing the opening of the primary file, problems with the
LazyOpen are solved. This option is new in version 6.000. Default value is true. This results in
code being generated in the WindowManager.Init method:

Access:PrimaryFile.UseFile

 28

 Icetips Cowboy SQL

Access:SecondaryFile.UseFile
Access:SecondaryFile2.UseFile

Etc.

COLORS

This option is for all it's intents and
purposes completely identical to the ABC
and Clarion browse colors options. It will
list the columns in the browse that have
the color setting turned on in the Listbox
Formatter and you can select what colors
to use here. Note that the Greenbar
effect overrides the Colors options in
version 6.000. Please refer to the
Greenbar on page 16 for more information
about the Greenbar effect. Conditional
colors can be specified in exactly the same
way as in the standard browse templates.
This option is new in version 6.000.

ICONS

This option, like the colors is identical to
the icons in ABC and Clarion browse
templates. It will list the columns in the
browse that have the icons turned on in
the Listbox Formatter. Conditional icons can be specified in exactly the same way as in the
standard browse templates.

STYLES

Styles are a very powerful tool to format
browses and listboxes to your liking. You
can change fonts, colors and data picture
by specifying a style. Styles are new in
version 6.000 and we have provided a
simple Style Builder to make life easier for
you. Click on the "Style Builder" button
and then click on the Insert button. Give
the style a name and specify the settings
you want to set. You can set any or all of
the options available, but only the ones
that are set will be generated. Once you
have created the styles you want, you can
apply them to the columns in the browse
that have styles enabled, simply by
selecting the style name from a dropdown.
You can set conditional styles in the same
easy manner by specifying the condition
and pick the style to use. This way you
can easily show specific data using a specific style. For example subscription that is run out or
overdue you could show in red with a bold font. Show payments in green.

 29

 Icetips Cowboy SQL

TOOLTIPS

The tooltips are a new feature in version 6.000. Too late to be fixed for this release, we
discovered that they do not seem to work, neither on SQL browse or plain ABC browses. We will
investigate this for the next release.

CLASSES

The classes tab only have the "Classes"
button which takes you to the standard
ABC classes window. That window allows
you to change the object name. Please do
NOT change the object name in the
current version (6.000) It will break the
generated code as it expects the name
SQL and the instance number of the active
template. You can however use this
option to derive and add new class
methods and properties if you need to.

Icetips Software Online Support
I-SOS

This window has 3 buttons that give you
direct access to online support. The SQL
templates version 6.000 is the first of our
products that get's this new support
options which we will add and include in
all our products as we release new
versions and builds in 2003.

The first button starts up your default
email client and props it with the
appropriate email address to send your
support request to along with some other
information. Please do not delete any of
the information that is automatically
populated as it may delay support!

The second button will take you to our
website at http://www.icetips.com where
you can check out our online resources for
SQL and also other of our products.

The third button will take you directly to
our support center which we are
developing. To begin with you will only
get a page where you can type in a
message to us, but in the near future we
will introduce FAQs and other online
resources for our customers.

 30

 Icetips Cowboy SQL

IIcceettiippss SSQQLL BBrroowwssee LLooccaattoorr aanndd CCCCSS SSQQLL BBrroowwssee LLooccaattoorr

The Icetips SQL template contain two slightly different locator controls. One is identical to the
original locator template and is provided for backward compatibility and because it provides a
slightly different functionality. The old locator which is called "CCS SQL Browse Locator" makes it
possible to use one locator control for all browses on the window. This is referred to as a shared
locator. In some cases this may not be intuitive for the end user and that is why we also provide
the new "Icetips SQL Browse Locator" which works with a specific browse only and can exist in
multiple instances on the same window.

Shared Locator

This only applies to the "CCS SQL Browse Locator". By checking this option you enable multiple
browse boxes to use the same locator.

Progressive Locator

A progressive locator is a drill down
locator where each search is ANDed with
the previous locator value. This allows
you for example to locate TX for Texas in
a statefield and then locate San Antonio in
a city column to retreive all records with
both TX and San Antonio. The locator
continues to be built up until the user hits
the Clear button at which point it is
cleared completely. You can change the
locator at runtime by using the
SetLocatorType method and use either
HPROP:LocSimple or
HPROP:LocProgressive, defined in the
ccssql1.inc:

HPROP:LocSimple EQUATE(5)
HPROP:LocProgressive EQUATE(6)

Example, to set the Locator to Progressive
Locator in code use the following:

SQL1.SetLocatorType |
 (HPROP:LocProgressive)

Dates in Locators

The way the backend get's date values is
very important. By default the date value
for the locator is set to @D10- You may
need to change this if you experience
problems with locators on date columns.
You can set the locator date picture at
runtime by setting the BackEndDateFormat
property. Example, if you want to
conditionally change the format to @D12-

 31

 Icetips Cowboy SQL

you could use this:

If BackendWantsD12
 SQL1.BackEndDateFormat = '@D12-'
Else
 SQL1.BackEndDateFormat = '@D10-'
End

 32

 Icetips Cowboy SQL

IIcceettiippss SSQQLL UUppddaattee BBuuttttoonnss

Update Procedure

SELECTING UPDATE PROCEDURE

Here you select the update procedure to
use for the browse. Select the form from
the dropdown, which will show you all
procedures in the application. If the form
takes parameters, you can add the
variables to pass to it. To assist you with
that the template will display the
prototype of the form and return type as
well as the description of the form
procedure. If the form returns a value,
the Return Value variable will be enabled
so you can specify a variable to receive
the return value from the form.

POPUP MENU

This is a new option in version 6.000. Now
you can implement the popup menu in the
same way as in the ABC browse. The
popup class will automatically take care of
handling the popup menu. The popup
class is set up to mimic the update
buttons. You can access the Popup menu
class with SQLx.Popup, where x is the
instance number of the SQL Object. For
example if you want to add your own button to the popup menu, you can use:

SQL1.Popup.AddItem('-') ! Adds a separator
SQL1.Popup.AddItemMimic('Button5',| ! Add a button mimic
 ?Button5) ! using button text as menu text
SQL1.Popup.AddItemMimic('Export',| ! Add a button mimic
 ?ExportButton,|
 'Export data') ! providing text for menu text

HOTKEYS

This section specifies the keys to alert on the browse to perform the insert, change and delete
actions. By default these are set to InsertKey, MouseLeft2 and DeleteKey. In most cases this is
enough, but in many cases you may want to add a hotkey to perform some of the tasks. In
version 6.000 you can add as many hotkeys as you want to use with the update buttons. Each key
requires an action to be selected so the browse knows what to do when the user hits the key.
You can add hotkeys directly in code by using the RegisterKey method. It takes the keycode and
action as parameter. The actions are the standard template actions of InsertRecord,
ChangeRecord, DeleteRecord or SelectRecord. To add the enter key as an example, you could do
it like this:

SQL1.RegisterKey(EnterKey,ChangeRecord)

 33

 Icetips Cowboy SQL

Insert Options

This tab has options that relate to what happens when a record is inserted.

LOCATE AND ISOLATE

This option makes the browse locate the
newly inserted record and isolate it. This
means that the new record is the only
record visible in the browse box. In future
release we intend to make the templates
automatically reset to where the new
record is and refresh so that it is selected.
This, however, requires major changes to
the classes and we decided not to do it for
this release.

SUPPRESS CLEAR

This is a new option in 6.000. When
checked the record is not cleared when
the record is primed in the FileManager
PrimeRecord method. This means that
fields can be primed prior to calling the
PrimeRecord method of the ABC
FileManager. This allows you to prime
fields that are not allowed to be NULLs
when the record is added. If you are using
Clarion's autonumber on files, the record is
added when it is primed. If the record is
cleared before it is added, it may contain
invalid fields, for example where Referential Integrity is enforced. Using this option with the
Field Priming options, you can have the templates generate code as the following code, from a
working application:

 Clear(IOI.Record)
 Loc:NewIOIID = GetAutoIncNumber (Loc:BrokerID, |
 EQU:AutoNum:IOI, |
 Glo:IsOfficeProgram)
 IOI:BrokerID = Loc:BrokerID
 IOI:ContactID = CON:ContactID
 IOI:AccountID = ACC:AccountID
 IOI:TransactionID = Loc:NewIOIID
 IOI:CompanyID = BRO:CompanyID
 IOI:OfficeID = BRO:OfficeID
 IOI:ProgramID = Glo:IsOfficeProgram + 1
 SetNull(IOI:CusipSysID)
 SuppressClear = True
 ! Parent Call
 ReturnValue = PARENT.PrimeRecord(SuppressClear)

This uses Pre-Priming, as well as SuppressClear and the option to Clear the record before it is
primed. It is very important that the Clear is used when using SuppressClear as otherwise the
active record is used to prime the new record! SuppressClear makes it possible to set up complex
priming both before and after the PrimeRecord is called.

 34

 Icetips Cowboy SQL

FIELD PRIMING

Field priming can occur in two places,
before and after the PrimeRecord method
is called. The PrimeRecord method calls
the FileManager PrimeRecord, which will
attempt to add the record to the
database. By using the SuppressClear,
Clear, pre- and post-priming, it is now
possible to prime the record with what you
need to make things work smoothly.

Example: You have a field that is set to
CAN NOT BE NULL constraints in the
database. Now you can simply populate it
with some valid value before the record is
primed, and then use SETNULL() on it
after it is primed to enforce the constraint when the form is accepted. It will not allow the user
to close unless he or she puts something into that field!

 35

 Icetips Cowboy SQL

IIcceettiippss SSQQLL SSeelleecctt BBuuttttoonn

The Select button control template simply
puts a button on the window that allows
the user to select a record and return it's
buffer to the calling procedure. This
button is hidden unless the browse is
called with SelectRecord, example:

GlobalRequest = SelectRecord
SQLBrowse ! Call the browse
If GlobalResponse=RequestCompleted
 ! A record was selected
Else
 ! Cancel on browse
End

This works identical to the Select button
control template in the ABC templates.

IIcceettiippss SSQQLL CCaanncceell BBuuttttoonn
This control template adds a Cancel
button to the window. The template
generates a call to the InitCancel method
of the CCSButtons class. This simply
makes the classes aware of the Cancel
button. We have not experienced any
problems in using the standard ABC Cancel
button with the SQL templates.

IIcceettiippss SSQQLL CClloossee BBuuttttoonn
This control template adds a Close button
to the window. The template generates a
call to the InitClose method of the
CCSButtons class. This simply makes the
classes aware of the Close button. We
have not experienced any problems in
using the standard ABC Close button with
the SQL templates.

 36

 Icetips Cowboy SQL

DDrroopp lliisstt ooff SSoorrtt OOrrddeerrss

No documentation available at this time.

 37

 Icetips Cowboy SQL

GGlloobbaall EExxtteennssiioonn TTeemmppllaatteess

GGeett UUsseerr NNaammee ffrroomm NNeettwwoorrkk
This template uses the GetUserName API call
to retrieve the user name of the currently
logged in user from the computer. It requires
a global variable to be picked which will
receive the username. This is performed in
global code before the main procedure is run,
so the username is available immediately
upon entering the main procedure. Note that
the variable used to contain the user name
MUST be a Cstring. You can select a variable
from the global data or you can enter a
variable that is declared in code and is not
available in the global data dropdown list.

UUssee DDeebbuuggggiinngg CCllaasssseess
The debugging classes are no longer included in the product and this template is only provided
for backward compatibility.

The Icetips SQL classes include a method called wDebug that can be used to pass strings to
OutputDebugString API call. The output can then be viewed with debugging tools such as the
freeware DebugView from www.systeminternals.com Please refer to the wDebug method of the
in the Class Reference on page 84 for more information.

GGlloobbaall OOppttiioonnss
This template has only one setting. It determines what is the minimum change in column width
that is regarded as user change. When the sort order moves from one column to the other, the
order signs and the header determine how
wide the column needs to be to be able to
show both the header and the order signs.
The font setting for the browse or window
also affect the width. To change the
threshold that determines the minimum
change considered to be user change and
means that the column width will NOT be
reset by the SQL templates, select the
appropriate number to use. The default is
10, which means that if the user changes the
size of the column by 11 dialog units, the
templates will not change it when the header
changes. If you reduce the number it means
that the user can make smaller adjustments
to the columns without the SQL templates
changing the column widths.

 38

 Icetips Cowboy SQL

PPrroocceedduurree EExxtteennssiioonn TTeemmppllaatteess

NNuullll ffiieellddss bbeeffoorree AAddddiinngg RReeccoorrdd
This template sets all blank or 0 fields in the selected file to NULL before the record is written to
the database. This template adds two embed points, Start of Setnull Routine and End of Setnull
Routine.

SSttoorree SSeelleecctt SSttaatteemmeenntt

This extension template adds a new method
to the SQL class, called ReadSQLProperties.
It prompts for variables to store the various
SQL properties, like PROP:SQL,
PROP:SQLOrder, PROP:SQLFilter etc. If the
ReadSQLProperties method is called, the
variables will contain the information about
the SQL statement sent to the driver and
optionally copy the SQL string to the
clipboard.

WWEEBB SSiizzee EExxtteennssiioonn

No documentation available at this time.

SSeeccuurriittyy PPaaggee SSeettuupp
No documentation available at this time.

RRoouuttiinnee DDeeccllaarraattiioonn
No documentation available at this time.

CCaallccuullaattee mmoonntthhllyy llooaann ppaayymmeenntt
No documentation available at this time.

RReessttoorree CChhiilldd AAfftteerr CCaanncceell
This template was provided as an addition by Horizon Business Concepts, Inc. It is provided as is
for those who may need it. It is to be used on forms that have an Icetips SQL browse on a child
file. If records have been added to the browse when the form is in insert mode and then the
form is cancelled, these records would be orhpans. This template takes care of that and deletes
the orphan records from the child table. At this time we do not have any further documentation
about this extension template.

 39

 Icetips Cowboy SQL

CCooddee aanndd wwoorrkkiinngg eexxaammpplleess
In this section of the manual we will provide some code examples from our own applications that
might help users to find solutions to common questions. This should not be seen as a complete
guide in any way, only a few samples from working applications. The examples are in no special
order in this manual. We will keep adding to this and we encourage you to send us code
examples, that you have found useful.

RReesseett bbrroowwssee bbaasseedd oonn vvaalluuee ffrroomm aa ddrrooppddoowwnn
In many cases you may need to reset a browse after something has happened, for example if you
are selecting a parent value from a dropdown, you need to reset the browse if the value changes.
In this example, the dropdown is an ABC dropdown with only a few records in it and the SQL
browse shows accounts that belong to the broker from the ABC dropdown. Obviously the variable
used in this code must be a hot field in the dropdown. The code is very simple and goes into the
Accepted event embed on the dropdown:

SQL1.SetFilterScope(HPROP:FilGlobal)
SQL1.SetGlobalFilter('ACC."BrokerID" = ' & Loc:BrokerID)
SQL1.Reset(1)

To start the browse using the same criteria, you need this same code in the code secton of the
TemplateAutoInit method, priority 5001, except you do not call the Reset method. To make this
manageable, create a routine, for example:

NewBrokerSelected ROUTINE
 SQL1.SetFilterScope(HPROP:FilGlobal)
 SQL1.SetGlobalFilter('ACC."BrokerID" = ' & Loc:BrokerID)

Now you can call this routine from TemplateAutoInit without change, and in the Accepted event
on the dropdown you change the code to:

Do NewBrokerSelected
SQL1.Reset(1)

 40

 Icetips Cowboy SQL

CChhiilldd bbrroowwssee oonn ppaarreenntt ffoorrmm

This is very simple to do and requires no handcode. Right click on the child browse, select
Actions and then click on the "Browse Box Behavior" button and go to the "Filter" tab. Click on
the "Global Filter" button and in the "Global filter/range limit:" entry field, type in something like
this:

!'TRN."IOISysID" = ' & IOI:TransactionID

Note the starting exclamation mark, which means that the rest of the field is used exactly as it is
typed in. In this case the listbox is range limited to the value of IOI:TransactionID, which can
have multiple transactions related to it. Translated to Clarion, this filter is the same as
TRN:IOISysID = IOI:TransactionID.

 41

 Icetips Cowboy SQL

SSyynncchhrroonniizziinngg mmuullttiippllee cchhiilldd bbrroowwsseess

On complex windows, it may be required to synchronize many child browses to one parent
browse. This may also need to be conditional for example based on what tabs are active etc. In
the following example, a browse has two child browses. We do this on the parent browse, in the
FetchQueue method. You will need to add code both into the Data and Code sections. Let's start
with the Code section:

SynchFilterMulti CString(10000)

We could do this dynamically, but in this case we are just happy with 10,000 bytes and it is
always going to be more than enough for this particular case.

Now let's see what we have in the Code section and then take a closer look. ?TradeIOISheet is
the sheet where the two child browses are on two separate tabs. ?TradeSheet is a sheet with
two tabs that determines a global filter for the SQL11 browse. SQL10 is the parent browse (ACC -
accounts), SQL11 (TRN - Transactions) and SQL12 (IOI - Indications Of Interests) are the child
browses.

GET(SELF.Q,xSel)
IF ~ERRORCODE() THEN
 SynchFilterMulti = ''
 Case Choice(?TradeIOISheet)
 Of 1
 Case Choice(?TradesSheet)
 Of 1
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:BrokerID') &|
 ' = ' & SQL10:Q.ACC:BrokerID
 SynchFilterMulti = SynchFilterMulti & ' AND '
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:AccountID') &|
 ' = ' & SQL10:Q.ACC:AccountID
 SQL11.ForceGlobalFilter(SynchFilterMulti,True)
 Of 2
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:BrokerID') &|
 ' = ' & SQL10:Q.ACC:BrokerID
 SynchFilterMulti = SynchFilterMulti & ' AND '
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:ContactID') &|
 ' = ' & CON:ContactID
 SQL11.ForceGlobalFilter(SynchFilterMulti,True)
 End
 Of 2
 SynchFilterMulti = ''
 SynchFilterMulti = SynchFilterMulti & SQL12.GetFieldSQLName('IOI:BrokerID') &|
 ' = ' &SQL10:Q.ACC:BrokerID
 SynchFilterMulti = SynchFilterMulti & ' AND '
 SynchFilterMulti = SynchFilterMulti & SQL12.GetFieldSQLName('IOI:AccountID') &|
 ' = ' &SQL10:Q.ACC:AccountID
 SQL12.ForceGlobalFilter(SynchFilterMulti,True)
 End
 RETURN True ! This return is VERY important, without Edit/Delete will not work!
ELSE
 SynchFilterMulti = '1 = 2'
 SQL11.ForceGlobalFilter(SynchFilterMulti,True)
 SynchFilterMulti = '1 = 2'
 SQL12.ForceGlobalFilter(SynchFilterMulti,True)
 RETURN True
END
RETURN False

 42

 Icetips Cowboy SQL

The first tab, which contains the TRN browse can be filtered either by the AccountID, or by the
ContactID, showing either transactions related to this account, or transactions related to the
contact, the owner of the account.

 Case Choice(?TradesSheet)
 Of 1
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:BrokerID') &|
 ' = ' & SQL10:Q.ACC:BrokerID
 SynchFilterMulti = SynchFilterMulti & ' AND '
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:AccountID') &|
 ' = ' & SQL10:Q.ACC:AccountID
 SQL11.ForceGlobalFilter(SynchFilterMulti,True)
 Of 2
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:BrokerID') &|
 ' = ' & SQL10:Q.ACC:BrokerID
 SynchFilterMulti = SynchFilterMulti & ' AND '
 SynchFilterMulti = SynchFilterMulti & SQL11.GetFieldSQLName('TRN:ContactID') &|
 ' = ' & CON:ContactID
 SQL11.ForceGlobalFilter(SynchFilterMulti,True)
 End

We build up the filter by appending the SQL name of the parent field, in the first case,
TRN:BrokerID by calling the GetFieldSQLName method and on the right side of the equation is the
value of the queue field from the Accounts browse. These queue fields are always constructed in
the same way: The classname for the browse, which you can see if you open the actions for the
browse as it is displayed on the main button. The next part is :Q. which is the name of the queue
that the templates create - it does not change. After that is the fieldname from the dictionary.
So if you need to refer to MYF:SystemID and your SQL class is called SQL7, it would be:

SQL7:Q.MYF:SystemID

So it is not all that difficult to work with, just learn and remember the basic rules about how it is
constructed.

Next step, we add an AND to the SQL statement as we are doing a filter on two fields. Then we
build up the second part of the statement in exactly the same way as the first one and when we
are done. Now we can call the ForceGlobalFilter and pass it the string with the SQL statement
that we have been building up. Note that the second parameter to ForceGlobalFilter is
redundant and can be omitted.

Same thing with the second tab, but there we use a field (CON:ContactID) that is not in the
queue, but directly in a file that is active at this point.

Notice the bold line with the RETURN True. That RETURN is VERY important because without it
the code falls to the bottom and returns False, which means that the method thinks it didn't work
and couldn't find the right record in the queue, and will not allow you to update or delete from
the browse!

 43

 Icetips Cowboy SQL

FFiilltteerr uussiinngg aann OOppttiioonn aanndd RRaaddiioo bbuuttttoonnss

In many cases it is convenient to range limit browses by using options and radio buttons. These
are easily selected by the user and convenient to use if the data set is completely fixed, for
example to show paid or unpaid transactions etc. In the example below it is actually used to
range limit a browse based on parent ID, grand parent ID or great grandparent ID!

The Loc:TRNFilter is a local byte variable, with "This Indication|Account|All Accounts" in the
Validity checks - must be in list and "0|1|2" as values.

SQL6.SetFilterScope(HPROP:FilGlobal)
Case Loc:TRNFilter
Of 0
 SQL6.SetGlobalFilter('TRN."BrokerID" = ' & IOI:BrokerID &|
 ' And TRN."IOISysID" = ' & IOI:TransactionID)
Of 1
 SQL6.SetGlobalFilter('TRN."BrokerID" = ' & IOI:BrokerID &|
 ' And TRN."AccountID" = ' & IOI:AccountID)
Of 2
 SQL6.SetGlobalFilter('TRN."BrokerID" = ' & IOI:BrokerID &|
 ' And TRN."ContactID" = ' & IOI:ContactID)
End
SQL6.Reset(1)

 44

 Icetips Cowboy SQL

CCllaassss rreeffeerreennccee

The Icetips Cowboy SQL is based on the CCSSql1 class, which is derived from the CCSButtons
class. The classes are stored in ccs*.* files which are installed into the LibSrc directory for Clarino
5.5/Clarion 6.0. The following class reference details each property and each method in all the
classes in the Icetips Cowboy SQL product. Some of these do not have any explanation and this
lists both private and protected properties. We will continue to improve on this class reference
in future versions.

Please note that we use similar color coding as the Clarion IDE. Properties that are protected
are red, private are maroon and virtual methods are green.

CCCCSSSSQQLL11 CCllaassss

Class Properties

ACCESS &FILEMANAGER

Description: FileManager instance that is used in the class.

ACTIVEINVISIBLE BYTE

Description: Property that determines if the browse is refreshed when it is not
visible.

ALERT LONG(0)

Description: Browse reorder (header click) hot key.

ALLOWSWAP BYTE(TRUE), PROTECTED

Description: Flag to indicate if column swapping is ON or OFF

AQ &PARAMQ, PROTECTED

Description: Joined to PQ thru ID, references to parameters for procedure calls.
ParamQ is defined as:

ParamQ QUEUE,TYPE
ID STRING(10)
ParamNum BYTE(0)
ParamRef ANY
 END

 45

 Icetips Cowboy SQL

ASCENDINGORDERSIGN STRING(1)

Description: One character string that contains the character used to indicate
ascending order. Default value is plus (+)

BACKENDDATEFORMAT CSTRING(20)

Description: Date format required by backend queries.

BOF BYTE(1), PROTECTED

Description: True or False for Beginning Of File was reached.

BROWSESTARTED BYTE, PROTECTED

Description: Flag True/False that at least 1 call to ApplyOrder() has been made.

BUFFERCOLFILTER &STRING, PROTECTED

Description: Column filter buffer. Dynamically created and destroyed.

COLSNAPTHRESHOLD SHORT(10)

Description: Affects column resizing when sort orders are changed. Default value
is 10.

COLUMNMESSAGE BYTE(0), PROTECTED

Description: Indicates if a message should be displayed when the user clicks on the
header of a column that can not be sorted. True if enabled, False if
disabled

COLUMNORDERTYPE BYTE(HPROP:COLUMNORDERBY), PROTECTED

Description: HPROP:ColumnOrderBy or HPROP:NoColumnOrderBy

COUNTRESETSTART LONG, PRIVATE

Description: Debug purposes.

DESCENDINGORDERSIGN STRING(1)

Description: One character string that contains the character used to indicate
descending order. Default value is minus (-)

DOWNFETCHROWS LONG(5), PROTECTED

Description: Extra rows fetched when Down Arrow is pressed. Default is 5 rows at
a time.

 46

 Icetips Cowboy SQL

DRAGCOL LONG(0), PROTECTED

Description: Column in which EVENT:Drag was started.

EOF BYTE(0), PROTECTED

Description: True or False for End Of File reached.

EQ &EXTSQLQ, PROTECTED

Description: References to extending SQL statements to be concatenated as
indicated by Pos. The ExtSQLQ is declared as:

ExtSQLQ QUEUE,TYPE
Pos BYTE(0) !HPROP:BeforeFrom to
 !HPROP:Replace
SQLString &CSTRING !Reference to string
 !containing extended SQL.
 END

FETCHRECORDONSELECT BYTE(FALSE), PROTECTED

Description: Toggles auto fetch record when selected in browse.

FIELDS LONG(0), PROTECTED

Description: Number of records in FQ

FILLFORWARD BYTE(1), PROTECTED

Description: Flag to indicate fill direction forward or backward.

FILSCOPE BYTE(HPROP:FILNONE), PROTECTED

Description: Filter Scope.

FIRSTSORTCOL USHORT, PROTECTED

Description: First sortable column (reading from left to right).

FQ &COLUMNQ, PROTECTED

Description: References to file fields and queue fields (queue fields only). The
ColumnQ is declared as:
ColumnQ QUEUE,TYPE
Col USHORT(0) !Column number being
 ! described
FName STRING(50) !Unique ID of this column
 ! (Full Field Name)
FFld ANY !Reference to file field
QFld ANY !Reference to queue field
Color LONG(0) !Column color at startup
Width LONG(0) !Column width at startup
CaretWidth LONG(0) !Column width with carets

 47

 Icetips Cowboy SQL

NoSort BYTE(0) !If true, disallow click-
 ! header resort on this
 ! column (hence, no locate).
Forced BYTE(0) !If true, this is a forced
 !field.
FcdFld ANY !Reference to browse queue
 ! fill field if forced.
FilSQL &STRING !SQL style filter
Order BYTE(HPROP:Ascending) !Current order of
 ! this column
Format STRING(200) !Column format string
AltName STRING(50) !Column name when a forced
 ! column (for queue sorting)
Header STRING(50) !Column header at startup
CaretHeader STRING(50) !Column header with carets
Picture STRING(50) !Column picture at startup
QueueFieldNr Short !Field number in Queue -
 !used to move columns around
 END

GLOBALFILTER &CSTRING

Description: Filter applied globally across all columns.

GLOBALFILTERBUFFER &CSTRING, PRIVATE

Description: Used internally to buffer the global filter to monitor parent browse
reset.

GROUPLIST &CSTRING

Description: String created as needed when select list contains functions.

HEADERSPREPARED BYTE

Description: Used to determine if the headers have been prepared or not. This is
used in the SetHeader method. It is set to False in the Init method
and to True in the UpdateHeaders method.

ININAME STRING(255), PROTECTED

Description: Name of application INI file.

INSTANCENAME STRING(30)

Description: Name of this instance for INI writes (Uses string version of object
name.)

 48

 Icetips Cowboy SQL

JOINTYPE BYTE(HPROP:JOINOUTER), PROTECTED

Description: The type of join, can be eitehr HPROP:JoinInner for inner joins, or
HPROP:JoinOuter for outer joins.

LASTCOL LONG(0), PROTECTED

Description: Copy of last column clicked for reversion. Default is left hand column,
column 1.

LASTSELECT &CSTRING

Description: Last select statement.

LASTVSCROLLPOS LONG(0), PROTECTED

Description: Most recent position of the vertical scroll thumb.

LIST LONG(0), PROTECTED

Description: The browse control (list box control)

LOADANDORDERBYTYPES BYTE(HPROP:PAGELOAD+HPROP:COLUMNORDERBY), PROTECTED

Description: Flags how browse is loaded (HPROP:PageLoad or HPROP:FullLoad) plus
how browse is ordered (HPROP:ColumnOrderBy or
HPROP:NoColumnOrderBy) HPROP:NoColumnOrderBy in this setting
causes column headerclicking to be disabled

LOADPENDING BYTE

Description: Not used.

LOADTYPE BYTE(HPROP:PAGELOAD), PROTECTED

Description: Determines if the browse is page loaded or file loaded. Default is
page loaded. Available values are HPROP:PageLoad or
HPROP:FullLoad.

LOC &STRING, PROTECTED

Description: Locator variable.

LOCCASE LONG, PROTECTED

Description: Case of original locator is buffered here and reapplied by
SetLocatorPic()

LOCCLEARCTL LONG(0), PROTECTED

Description: FEQ of the Locator clear button.

 49

 Icetips Cowboy SQL

LOCCTL LONG(0), PROTECTED

Description: FEQ of the Locator control.

LOCFILTER &CSTRING

Description: Applied with any other filter on locate.

LOCMGR &CCSLOCMANAGER

Description: Class that manages which browse owns the locator. See the
CCSLocManager documentation on page 86.

LOCPROMPTCTL LONG(0), PROTECTED

Description: FEQ of the Locator prompt control.

LOCSHARED BYTE(0)

Description: Flags locator shared, True or False.

LOCTYPE BYTE(HPROP:LOCSIMPLE), PROTECTED

Description: Determines the Locator type, simple or progressive. Values can be
either HPROP:LocSimple or HPROP:LocProgressive.

MARK &BYTE

Description: Reference to queue marker (stored in browse queue).

OBJECTNAME CSTRING(31)

Description: Contains the name of the class object. Used in calls to wDebug.

PAGESAHEAD LONG(0), PROTECTED

Description: Buffer setting.

PAGESBEHIND LONG(0), PROTECTED

Description: Buffer setting.

PAGESIZE LONG(1), PROTECTED

Description: Buffer setting.

POSTFIXSIGN STRING(1)

Description: One character string that determines what to use as a postfix to the
header of the current sort column. Default value is >

 50

 Icetips Cowboy SQL

PQ &PROCQ, PROTECTED

Description: Queue of stored procedures. The ProcQ is declared as:

ProcQ QUEUE,TYPE
ID STRING(10)
Direction BYTE(0) !HPROP:FillForward or
 !HPROP:FillBackward
FName STRING(50) !Used to find FQ record by
 !FieldName when stored
 !procedure.
Proc STRING(100)
 END

PREFIXSIGN STRING(1)

Description: One character string that determines what to use as a prefix to the
header of the current sort column. Default value is <

PRIMARY &FILE

Description: Primary view file.

PRIMARYALIAS CSTRING(20)

Description: Primary view file alias.

PROCNAME STRING(30), PROTECTED

Description: Name of the procedure for INI writes.

Q &QUEUE

Description: Browse Queue reference.

QRECS LONG(0), PROTECTED

Description: Records in browse Queue from RECORDS(SELF.Q)

RELATIONS &CSTRING

Description: String contains AddRelation() created relations.

RESET BYTE(0)

Description: Flag to indicate if the browse should be reset.

RESETS &FIELDPAIRSCLASS

Description: Instance of the FieldPairsClass that is used to determine if a value of a
field that has been registered has changed.

 51

 Icetips Cowboy SQL

RESETWHENVISIBLE BYTE

Description: Determines if the browse needs to be reset when it becomes visible.
Internal use only.

ROWS LONG(0), PROTECTED

Description: Number of rows to load into listbox.

SAVEFORMAT BYTE(TRUE), PROTECTED

Description: Flag to indicate if the browse format should be saved. Set to True or
False to turn it ON or OFF.

SEL LONG(0), PROTECTED

Description: Currently selected queue record.

SESSIONTIME LONG, PRIVATE

Description: For debugging.

SORTCOL LONG(1), PROTECTED

Description: Currently active sort order column default is left hand column (1)

SORTCOLOR LONG(0), PROTECTED

Description: Color of sorted column when active.

SQ &SELECTQ, PROTECTED

Description: References to select statement fields (all fields in select statement)

SYNCHCHILDID STRING(30), PROTECTED

Description: Name of child field in parent/child join relationship.

SYNCHPARENTID ANY, PROTECTED

Description: Reference to parent field in parent/child join relationship.

TABLENAMEQ &TABLENAMEQUEUE

Description: A reference to the TableNameQueue. This queue is not used in the
classes.

TIMEOUT LONG(0), PROTECTED

Description: Buffer setting.

 52

 Icetips Cowboy SQL

TOOLBAR &TOOLBARCLASS

Description: A reference to the ToolbarClass ABC class.

TOOLBARITEM &CCSTOOLBARLISTBOXCLASS

Description: A reference to the CCSToolBarListBoxClass class. Please refer to page
88 for more information about this class.

TOOLCONTROL SIGNED

Description: Not used by the class.

USEFILEPREFIX BYTE(0)

Description: Not used by the class.

VIEWOPEN BYTE(0), PROTECTED

Description: Indicates if the View is Open or not.

VIEWPARAM BYTE(0), PROTECTED

Description: Parameter count for this procedure.

VIEWPOS &STRING

Description: Reference to file view position (stored in browse queue)

VIEWPROC BYTE(0), PROTECTED

Description: Flag indicates use current view procedure.

VPOS LONG(0), PROTECTED

Description: Vertical position offset.

VW &VIEW

Description: Browse view reference.

WHERECLAUSE &CSTRING

Description: String created as needed or referencing user-owned where expression.

WINDOW &WINDOWMANAGER

Description: Reference to the Window Manager ABC object.

 53

 Icetips Cowboy SQL

Class Methods

ADDFIELDFUNCTION LONG, PROC

Parameters: String xFldName
String xFunc

Return type: Long

Description: This method adds a call to an SQL function as specified in xFunc to fill
the Field specified in xFldName.

ADDQFROMBUFFER VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Add a new browse Q record from the record buffer and store it's file
position marker.

ADDQUEUEFIELD

Parameters: Long xCol
String xFName
*? XFld
*? XQFld
Byte xNoSort
<*? xFcdFld>
<String xAltName>

Return type: Does not return a value

Description: Establish information about the queue fields that will be loaded from
the file. Properties such as header,width, format which are likely to
change are buffered in the queue. The field's column position in the
browse is the queue key.

ADDRELATION

Parameters: String xPrefix
*KEY xKey
*Group xRec
String xFldList

Return type: Does not return a value

Description: In the event the programmer provides no WHERE clause in the
template, the template calls here. This code figures out the
relationships between the tables, given the keys and a list of fields
supplied by the template (xFldList).

 54

 Icetips Cowboy SQL

ADDRESETFIELD

Parameters: *? Field

Return type: Does not return a value

Description: Adds the passed field/variable to the Resets property which is an
instance of the ABC FieldPairsClass.

ADDSELECTFIELD

Parameters: Long xSelPos
String xFName
* ?Fld
File xFile
*Group xRec
FileManager xFM
<*Key xSelKey>
<String xKeyName>
String xFilePrefix

Return type: Does not return a value

Description: Establish information about the SELECT fields comprising the browse.
Some of this could be gotten elsewhere with property inspection, but
this brings everything to one place and makes the class less sensitive
to driver differences. SQ stands for SelectQ. Inner-style SELECT
statements are built with the field information stored here. The field's
Clarion name (including prefix) is the queue key. The driver's file alias
property is set here, based on the Clarion prefix.

Date and time fields have to be handled differently when they're in a
group as this indicates they're being used to define an SQL timestamp.
This is a typical structure:

pubdate STRING(8),NAME('pubdate')
pubdate_GROUP GROUP,OVER(pubdate),NAME('pubdate_GROUP')
pubdate_DATE DATE
pubdate_TIME TIME
 END

 In this situation you can't use the DATE or TIME field in the select
statement because those fields only exist in the Clarion record
structure. Instead you locate the name of the field OVER which the
group has been declared.

ADDTOOLBARTARGET

Parameters: ToolbarClassT

Return type: Does not return a value

Description: Clone of the ABC version of the same name. Used to hook the toolbar
into the browse and establish an instance of CCSToolBarListBoxClass.
CCSToolBarListBoxClass only differs from the ABC one in that it does
not use a reference to the browse, only the list box FEQ to determine
whether the browse is visible.

 55

 Icetips Cowboy SQL

ADDVIEWPROCEDURE LONG, PROC

Parameters: String xProcID
String xProcCall
Byte xRslt
<String xColVar>
<Byte xDir>

Return type: Long, Proc

Description: Add a stored procedure into a bank of callable stored procedures.! PQ
stands for ProcedureQ. Stored procedures are stored by a
programmer-determined ID (xProcId). This can be any unique string by
which the procedure can be identified when needed.

ADDVIEWPARAMETER BYTE, PROC

Parameters: String xProcID
Byte xParamNum
*? xParamRef

Return type: Byte, Proc

Description: Adds an new parameter to an installed, stored procedure identified by
xProcId, and xParamNum. If a parameter of number xParamNum
already exists, this replaces it.

ALLOWSWAPPING

Parameters: Byte xYesNo

Return type: Does not return a value

Description: Determines if the browse allows columns to be swapped. XYesNo
parameter can be True or False.

APPLYORDER VIRTUAL

Parameters: Byte xForce

Return type: Does not return a value

Description: Virtual method. Master method called by the template to start a
browse off. If xForce is stipulated the browse is immediately filled
with data from the file. If xForce is omitted the browse has all the
necessary properties set - width, color, header of the sort column.
The first time called at browse startup the browse format strings are
read from the INI. and the SELF.BrowseStarted flag is set to true.

 This method can also be called any time with xForce to refresh the
browse. Call with xForce set to False if you want to initialize a child
browse which should not be immediately filled till the parent browse
forces a global filter on it.

 56

 Icetips Cowboy SQL

BUFFER VIRTUAL

Parameters: <Long xPg>
<Long xBehind>
<Long xAhead>
<Long xTime>

Return type: Does not return a value

Description: Virtual method. This method is called to initialize the Driver buffer
settings. See Clarion documentation about the Buffer statement.

BUFFERGLOBALFILTER

Parameters: No parameters

Return type: Does not return a value

Description: Stores a copy of the current global filter into the
SELF.GlobalFilterBuffer property.

BUILDEXTENDEDSQL STRING, VIRTUAL

Parameters: Byte xPos

Return type: String

Description: Virtual method. Returns the Extended SQL addins determined by the
programmer in the template. xPos can be any one of the flags defined
in CCSSQL1.inc for BuildExtendedSQL:

HPROP:BeforeFrom EQUATE(1)
HPROP:BeforeWhere EQUATE(2)
HPROP:BeforeOrderBy EQUATE(3)
HPROP:AfterOrderBy EQUATE(4)
HPROP:Replace EQUATE(5)
HPROP:ReplaceOrderBy EQUATE(6)

BUILDFIELDLIST STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Builds a list of fields determining the field SELECT list
into an SQL statement. If there's a field function in the select
statement this function creates the GROUP BY component required.
Any extended SQL of type HPROP:BeforeFrom, is installed here. The
programmer is responsible for making sure his SQL component is
correctly formatted given its placement.

BUILDFILELIST STRING, VIRTUAL

Parameters: No parameters

Return type: String

 57

 Icetips Cowboy SQL

Description: Virtual method. Builds the view's file list into SQL including the file
aliases determined earlier from Clarion prefixes. If there's any
extended SQL (of type HPROP:BeforeWhere) established by the
programmer in the template, this is appended to the file list. The
programmer is responsible for ensuring that the correct conjuction is
present.

BUILDORDERSTATEMENT STRING, VIRTUAL

Parameters: String xFName

Return type: String

Description: Virtual method. Master call for building the order statement. A good
place to embed code if you want to build the Order clause.

BUILDSELECTSTATEMENT STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Builds the final-final select statement, taking into
account all of the probable settings. Individual sections are
commented below.

BUILDVIEWPROCEDURE STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Builds the view procedure components into SQL, ready
to be sent to the data base.

BUILDWHERESTATEMENT STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Builds the final-final WHERE statement.

CALLUPDATE LONG, PROC, VIRTUAL

Parameters: Long xRequest

Return type: Long, Proc

Description: Virtual method. Placeholder method into which the template can
write embeds with the relevant update form.

CHANGE BYTE, PROC, VIRTUAL

Parameters: Long xSel

Return type: Byte, Proc

 58

 Icetips Cowboy SQL

Description: Virtual method. This method is called by the change button accepted
event.

CHECKLOCATORFILTER STRING

Parameters: String pFilter

Return type: String

Description: This function doubles up single quotes in the locator text. This
prevents problems with the backends when locating for example on
the word Sam's and it is changed to Sam''s

CHECKRESETFIELDS

Parameters: No parameters

Return type: Does not return a value

Description: This method uses the EqualBuffer method of the FieldPairsClass to
detect changes in any registered reset fields. If the fields have
changed. The new value is assigned to the FieldPairsClass to prevent
multiple resets and the browse is forced to reset if needed.

CLEARCURRENTFILTER

Parameters: No parameters

Return type: Does not return a value

Description: This method clears the Global or Column filter based on what filter
scope is active. It does not reset the browse or change the scope.

CLEARGLOBALFILTER

Parameters: <Byte xForce>

Return type: Does not return a value

Description: Clears the global filter. If xForce is true, it forces a browse refresh.
Otherwise there is no effect until some other cause, such as a header
click forces a browse refresh.

CLEARGLOBALFILTERBUFFER VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Clears the buffered version of the global filter.

CLEARLOCATOR LONG, PROC, VIRTUAL

Parameters: No parameters

Return type: Long, Proc

 59

 Icetips Cowboy SQL

Description: Virtual method. Clears the locator and resets the browse but only if
this browse owns the locator (if it's shared). Non-shared locators are
obviously always owned by the browse to which they are initialized.

CLEARLOCATORNOFORCE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Clears the locator but does not immediately refresh
the browse.

CLEARVIEWPROCEDURE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Clears the ViewProc Flag (True/False) which, if true,
causes SELF.ResetQueue() and SELF.Reset(True) to refresh from the
currently selected stored procedure.

CLEARWHERECLAUSE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Clears the current value in SELF.WhereClause

CLOSEVIEW VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Closes the view (if it is open) and clears any view
properties.

CONSTRUCT PROTECTED

Parameters: No parameters

Return type: Does not return a value

Description: Protected method. This is the initial constructor and it creates new
instances of some property queues to make sure they are ready when
the class is initialized and starts.

COUNTVIEWPARAMETERS BYTE, PROC, VIRTUAL

Parameters: String xProcId

Return type: Byte, Proc

 60

 Icetips Cowboy SQL

Description: Virtual method. This counts the number of parameters that were
described as belonging to the installed, stored procedure identified by
xProcId.

DELETE BYTE, PROC, VIRTUAL

Parameters: Long xSel

Return type: Byte, Proc

Description: Virtual method. Called by the delete button accepted event.

DELETEVIEWPROCEDURE BYTE, PROC, VIRTUAL

Parameters: String xProcID

Return type: Byte, Proc

Description: Virtual method. Deletes an installed view procedure.

DELETEVIEWPARAMETER BYTE, PROC, VIRTUAL

Parameters: String xProcId

Return type: Byte, Proc

Description: Virtual method. Deletes a parameter from the installed, stored
procedure identified by xProcId.

DESTRUCT PROTECTED

Parameters: No parameters

Return type: Does not return a value

Description: Protected method. Final destruction of all data created (NEWed)
anywhere by this class.

DRAG PRIVATE

Parameters: Long xSourceCol
Long xDestCol

Return type: Does not return a value

Description: Private method. Called by SELF.DropColumn() the determine positions
of source and target columns.

DROPCOLUMN VIRTUAL

Parameters: No parameters , Virtual

Return type: Does not return a value

Description: Entry point for chain of calls required to drop a column that is being
"dragged".

 61

 Icetips Cowboy SQL

EMBEDSYNCHFILTER VIRTUAL

Parameters: *CString xFilter

Return type: Does not return a value

Description: Virtual method. Placeholder method into which the template can
write embeds.

FETCHFORMAT LONG, PROC, VIRTUAL

Parameters: No parameters

Return type: Long, Proc

Description: Virtual method. Fetches the current browse formats strings saved in
the INI file. The SELF.SaveFormat property must be set to True
(Default).

FETCHQUEUE LONG, PROC, VIRTUAL

Parameters: Long xSel

Return type: Long, Proc

Description: Virtual method. A placeholder method that fetches the queue record
specified in xSel. The template writes code in here to send refresh
commands to synchronized child browses, if any.

FETCHRECORD BYTE, PROC, VIRTUAL

Parameters: Long xSel

Return type: Byte, Proc

Description: Virtual method. Fetches the selected record depending on the setting
of SELF.FetchRecordOnSelect. If True, regets the record from disk
and refreshes this to the Q (and obviously the BUFFER). If False,
refreshes the record from Q to BUFFER.

FILLQUEUEFIELD BYTE, PROC, VIRTUAL, PRIVATE

Parameters: No parameters

Return type: Byte, Proc

Description: Virtual and Private method. A method used internally to pass a data
field to a queue field. In the case of a forced sort, where the
programmer has control of what goes into the queue field, this
method calls into another method of the same name (but with
parameters). The programmer can embed into that method. (See
below).

FILLQUEUEFIELD BYTE, PROC, VIRTUAL

Parameters: String xFName
ANY xValue

 62

 Icetips Cowboy SQL

Return type: Byte, Proc

Description: Virtual method. A placeholder method into which the programmer
(with help from the template) can control data going into a queue
field. This happens in the case of a "Forced Sort" where the queue
displays a local variable filled with data from the file.

FORCECOLUMNFILTER LONG, PROC, VIRTUAL

Parameters: String xFilter

Return type: Long, Proc

Description: Virtual method. Same as the SetColumnFilter method except it forces
a browse refresh and sets the FilterScope property automatically.

FORCEGLOBALFILTER

Parameters: String xFilter
<Byte xSel>

Return type: Does not return a value

Description: Same as SetGlobalFilter except that this one causes the browse to
instantly refresh. This is used to synchronize child browses. In that
case the template calls here from an embed in the FetchQueue
method. Please note that the omittable xSel parameter is never used
in this method.

FORCEHEADERCLICK LONG, PROC, VIRTUAL

Parameters: String xFname

Return type: Long, Proc

Description: Virtual method. This handles the details when the user clicks on a
header column.

FORCEVIEWPROCEDURE

Parameters: String xProcID

Return type: Does not return a value

Description: Forces the browse to refresh using the view procedure identified by
xProcID.

GETACTIVEINVISIBLE BYTE

Parameters: No parameters

Return type: Byte

Description: Returns the value of Self.ActiveInvisible

 63

 Icetips Cowboy SQL

GETCOLUMNFIELD STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Probably redundant but still used by the Locate
function to determine the SQL field name in building a locator filter.

GETCOLUMNFILTER STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Returns the column filter string for the current
column.

GETCOLUMNFILTER STRING, VIRTUAL

Parameters: Long xCol

Return type: String

Description: Virtual method. Returns the column filter string for a specific column
(xCol).

GETCOLUMNFROMNAME LONG, PROC, VIRTUAL

Parameters: String xColVar

Return type: Long, Proc

Description: Virtual method. Returns the column number given the Clarion field
name (expressed as a string).

GETCOLUMNHEADER STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Return the current column header name.

GETCURRENTFILTER STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Returns the entire filter, based on how
SELF.FilterScope is set.

GETCURRENTORDERSUFFI X STRING, VIRTUAL

Parameters: No parameters

Return type: String

 64

 Icetips Cowboy SQL

Description: Virtual method. Determines the Order suffix based on fill direction
and order properties.

GETDATETIMEFIELDNAME STRING, VIRTUAL

Parameters: *FILE xFile
*GROUP xRec
String xFName

Return type: String

Description: Virtual method. Gets the name of the field that is overed by a group
containing the field passed as xFName.

GETDEFAULTORDER LONG, VIRTUAL

Parameters: No parameters

Return type: Long

Description: Virtual method. Figures out what the default order direction is when a
column has a key.

GETFIELDSQLNAME STRING, VIRTUAL

Parameters: String xFldName
<String Origin>

Return type: String

Description: Virtual method. Creates a field's SQL name from it's Clarion name,
including double quotes.

GETFILTERSCOPE BYTE, VIRTUAL

Parameters: No parameters

Return type: Byte

Description: Virtual method. Returns the value of SELF.FilScope.

GETFIRSTSORTCOLUMN USHORT, PRIVATE

Parameters: No parameters

Return type: Ushort

Description: Private method. Figures out at browse startup which is the first
column that allows column sorting and returns that value to the caller.

GETGLOBALFILTER STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Returns the value of SELF.GlobalFilter or empty
string if there is no GlobalFilter.

 65

 Icetips Cowboy SQL

GETHEADER STRING

Parameters: No parameters

Return type: String

Description: Returns the header of the current sort column.

GETKEYCOMPONENTSUFFI X STRING, VIRTUAL

Parameters: Byte xElement

Return type: String

Description: Virtual method. Key referred to is always SELF.SQ.Key. Any non-
leftmost key component must take on the opposite of it's normal order
if the leftmost key component's order is reversed from the key's order.

GETLOCFILTER STRING, VIRTUAL

Parameters: No parameters

Return type: String

Description: Virtual method. Returns the current locator filter (if any) - i.e. the
value of SELF.LocFilter.

GETNE XTFIELD STRING, PRIVATE

Parameters: String xFldList
USHORT xNdx

Return type: String

Description: Private method. Used by AddRelation method to parse the field list
supplied to it into individual fields.

GETORDER LONG, PROC, VIRTUAL

Parameters: No parameters

Return type: Long, Proc

Description: Virtual method. Inspect the order setting on the current column. If no
order setting, determine if there is any "natural" order as mandated by
a key.

GETORDERSIGN STRING, PRIVATE

Parameters: No parameters

Return type: String

Description: Private method. Returns the directional sign + or - that should be
applied to a browse header given the current sort order assigned. This
is determined by the Self.AscendingOrderSign and
Self.DescendingOrderSign properties.

 66

 Icetips Cowboy SQL

GETORDERSTATEMENT STRING, VIRTUAL

Parameters: String xFName

Return type: String

Description: Virtual method. Builds the order clause when the browse is page
(batch) loaded and browse order must be determined at file level,
with an order clause, based on the currently highlighted column and
the current browse order setting (HPROP:Ascending or
HPROP:Descending).

GETROWS LONG

Parameters: No parameters

Return type: Long

Description: Inspect the property that determines the number of rows that are
added to a browse each time the ResetQueue method is called.

GETSORTCOLOR LONG

Parameters: No parameters

Return type: Long

Description: Returns the SortColor property. (The color designated to be applied to
the text in the current sort column).

GETSORTCOLUMN LONG, VIRTUAL

Parameters: No parameters

Return type: Long

Description: Virtual method. Returns the current sort column, i.e. the SortCol
property.

GETSORTWIDTH LONG

Parameters: No parameters

Return type: Long

Description: Returns the width of the current sort column.

GETVIEWFILTER STRING, PRIVATE

Parameters: No parameters

Return type: String

Description: Private method. Depending on a number of things such as the state of
the locator, programmer WHERE clause, column and global filters this
determines the pre-final-final WHERE clause.

 67

 Icetips Cowboy SQL

GETVISIBLE BYTE

Parameters: No parameters

Return type: Byte

Description: Returns True or False depending if the Prop:Visible is True or False for
the listbox control. This is used in implementing the ActiveInvisible
property.

HEADERCLICK LONG, PROC, VIRTUAL

Parameters: Long xKeyCode

Return type: Long, Proc

Description: Virtual method. This handles the details when the user clicks on a
header column. Specifics are explained in each of the sections below.

INIT

Parameters: String pObjectName

Return type: Does not return a value

Description: This method is responsible for setting up the WindowComponent
Interface, set the order signs and sort signs, instanciate the
FieldPairsClass and some other initial housekeeping. The name of the
class object is passed to it, i.e. 'SQL1' or 'SQL5' for example. This is
useful for debugging purposes.

INITLOCATOR

Parameters: *String xLocator
Long xLocCtl
Long xLocClearCtl
Long xLocPrompt
Byte xLocType
String xDateForm
Byte xSharedTF
CCSLocManager xLocMgr)

Return type: Does not return a value

Description: Initializes a locator for the browse. Includes a reference to the locator
variable which is owned by the browse procedure and is determinable
by the programmer in the template. The original case (UPPER/LOWER)
of the control is trapped as this value seems to be lost when the text
property (picture) is changed as different columns are selected to
order the browse. If there's any special back-end date format it is
provided here and used when the locator filter (WHERE) is created. If
the locator is shared, then this browse is added to the LocatorManager
object's Q of browses sharing this locator. All locate calls ultimately
are directed from the LocatorManager based on the last locator-
sharing browse to be selected, re-ordered or CtrlMouseLeft-ed.

 68

 Icetips Cowboy SQL

INSERT BYTE, PROC, VIRTUAL

Parameters: Long xSel

Return type: Byte, Proc

Description: Virtual method. Called by the Insert button accepted event.

INSERTSQL

Parameters: Byte xPos
String xSQL

Return type: Does not return a value

Description: Inserts user SQL statements into the EQ. (ExtendedSQL Q). All non-
legal positional values are ignored.

ISSORTCOLUMN BYTE, PRIVATE

Parameters: USHORT xCol

Return type: Byte

Description: Private method. Returns true or false to indicate that the column
specified in xCol is a sortable column or not.

KILL

Parameters: No parameters

Return type: Does not return a value

Description: Cleans up hotkeys and popup menu. Also calls the Kill method of the
FieldPairsClass and disposes of the FPC instance.

LOCATE LONG, PROC, VIRTUAL

Parameters: No parameters

Return type: Long, Proc

Description: Virtual method. Build a locator based on current order column, field
picture and whether HPROP:LocSimple or HPROP:LocProgressive. A
progressive locator isn't cleared between searches until the user
presses the CLR button.

OPENVIEW VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Open the view, after first ensuring that is is closed.

POSITIONFQ LONG, PROC, PRIVATE

Parameters: Long xColumn

 69

 Icetips Cowboy SQL

Return type: Long, Proc

Description: Private method. Positions the field Q to the column supplied in xCol.
This exposes all the properties describing the field (See Q definition in
the INC file).

POSITIONSQFIELD LONG, PROC, PRIVATE

Parameters: String xFldName

Return type: Long, Proc

Description: Private method. Positions the SELECT queue to a specific select field's
properties using field name as the retrieval indicator.

POSITIONSQFILE LONG, PROC, PRIVATE

Parameters: String xFileName

Return type: Long, Proc

Description: Private method. Positions the SELECT queue to a specific select field's
properties using file name as the retrieval indicator.

POSITIONSQPOS LONG, PROC, PRIVATE

Parameters: USHORT xPos

Return type: Long, Proc

Description: Private method. Positions the SELECT queue to a specific select field's
properties using field position as the retrieval indicator.

PRIMERECORD LONG, PROC, VIRTUAL

Parameters: Byte SuppressClear=0

Return type: Long, Proc

Description: Virtual method. Calls the PrimeRecord ABC method to prime a record,
including auto-inc if indicated in the dictionary. Version 6.000
supports SuppressClear parameter, which is False by default.

READSQLPROPERTIES VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. The ReadSQLProperties virtual is a placeholder for
template code that lets the user specify which fields to store the SQL
properties in. It must be called any time PROP:SQL, PROP:SQLOrder,
or PROP:SQLFilter is set. The derived virtual, if any, can then take
action based on the values of these properties. Currently there is an
extension to the browse which lets the user store these properties in a
variable and optionally copy them to the clipboard.

 70

 Icetips Cowboy SQL

REFRESHBUFFERFROMQ VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Reads the Browse Q fields into the record BUFFER for
the currently selected record.

REFRESHQFROMBUFFER VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Reads the record BUFFER fields into the browse Q.

REGETRECORD LONG, PROC, VIRTUAL

Parameters: Long xSelected

Return type: Long, Proc

Description: Virtual method. Reget the queue record in xSelected from the file.

REPOSITIONFQ LONG, PROC, PRIVATE

Parameters: No parameters

Return type: Long, Proc

Description: Private method. Repositions the field Q to the current sort column
settings. As field properties are inspected for one reason or another,
the field Q position is moved from the current sort column setting. A
call here will bring the current SELF.SortCol field properties back into
scope.

RESET VIRTUAL

Parameters: Byte xForce=0

Return type: Does not return a value

Description: Virtual method. Resets the record when xForce is false. (See the
FetchRecord method) Resets the browse when xForce is true. (See the
ResetQueue method when Reset = True) This method is called by the
WindowComponent method calls to reset the browse.

RESETONWINDOWUPDATE

Parameters: No parameters

Return type: Does not return a value

Description: Not implemented in 6.000

 71

 Icetips Cowboy SQL

RESETQUEUE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Master method that calls all the relevant methods to
reset (Refresh) the browse from the current position, or from the top
or bottom, depending on the state of the Reset property (True or
False), and the FillForward property (True or False). It also sets
various flags to indicate it has reached the top of the data set
(SELF.Bof) or the bottom (SELF.Eof).

RESETROWS VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Reset the number of rows added to the browse queue
each time the ResetQueue method is called or the Reset(True) method
is called back to the number of visible items in the list box. Next
browse refresh will be a complete reset.

RESETSORTCOLUMN

Parameters: Byte pColumnNumber

Return type: Does not return a value

Description: Sets the pColumnNumber column the active sort column.

RESETSTART VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. This method is called by SELF.ResetQueue() when the
browse Q is empty or when SELF.Reset is set to True. It closes the
view and reopens it with whatever new affecting properties are in
place. For debugging, this method will write inner selects to a file less
cluttered than the standard ODBC trace log. With multiple browses on
a window it will also indicate which browse selected what and how
many times browse reset was fired on each browse. To turn this on,
add the word "DebugOn" into the Project/Properties/Defines area and
recompile. (Don't forget to turn it off before you deliver or you'll
create a monster.)

RESTORECOLUMN LONG, PROC, PRIVATE

Parameters: No parameters

Return type: Long, Proc

Description: Private method. Restores the list box properties of the column that
has !stopped being the sort column. Header changed back, width set
back (unless it has been significantly resized by the user), text color

 72

 Icetips Cowboy SQL

set back to normal. Field Q positioned back to the current sort
column.

RESTOREGLOBALFILTER

Parameters: <Byte xForce>

Return type: Does not return a value

Description: Restores the global filter from the temporarily buffered version.

SAVEBROWSEFORMAT

Parameters: Byte xYesNo

Return type: Does not return a value

Description: Sets the SaveFormat property. All out of range values are ignored.

SCROLLDOWN

Parameters: <Long xRows>

Return type: Does not return a value

Description: Scroll down one record. The omittable parameter isnt used here but
could be put into use by some embed code in an overriding procedure.

SCROLLUP

Parameters: <Long xRows>

Return type: Does not return a value

Description: Scroll up one record. The omittable parameter isnt used here but
could be put into use by some embed code in an overriding procedure.

SELECTBROWSE LONG, PROC, VIRTUAL

Parameters: <Long xSel>

Return type: Long, Proc

Description: Virtual method. Selects the browse record in the xSel parameter (if
any). Also does a fetch record which refeshes the file buffer from the
Queue or from the data base depending on the value in FetchOnSelect
property, True or False.

SETACTIVEINVISIBLE

Parameters: Byte pActiveInvisible

Return type: Does not return a value

Description: Sets the ActiveInvisible property to True or False.

 73

 Icetips Cowboy SQL

SETALERT VIRTUAL

Parameters: Long xAlert

Return type: Does not return a value

Description: Virtual method. Alert the standard hot keys for the browse as well as
the configurable hot key SELF.Alert that reorders the browse.

SETCOLUMNFILTER LONG, PROC, VIRTUAL

Parameters: String xFilter

Return type: Long, Proc

Description: Virtual method. Sets a filter on the current column. Each column in a
browse can, in fact have a different filter applied. As the operator
changes sort columns with a header click, the data view can change.
This setting has no effect unless filter scope is first set with
SELF.SetFilterScope(HPROP:FilColumn) and the browse is refreshed. It
calls it's namesake stipulating the current sort column.

SETCOLUMNFILTER LONG, PROC, VIRTUAL

Parameters: String xFilter
Long xCol

Return type: Long, Proc

Description: Virtual method. Sets a filter on a specific column (xCol). Each column
in a browse can, in fact have a different filter applied. As the operator
changes sort columns with a header click the, data view can change.
This setting has no effect unless filter scope is first set with
SELF.SetFilterScope(HPROP:FilColumn) and the browse is refreshed.

SETCOLUMNHEADER LONG, PROC, VIRTUAL

Parameters: String xHdr

Return type: Long, Proc

Description: Virtual method. Change the current column header name.

SETCOLUMNMESSAGE VIRTUAL

Parameters: Byte xTorF

Return type: Does not return a value

Description: Virtual method. Sets the SELF.ColumnMessage property. All out of
range values are ignored.

SETCOLUMNORDERTYPE

Parameters: Byte xType=HPROP:ColumnOrderBy

Return type: Does not return a value

 74

 Icetips Cowboy SQL

Description: Sets the value of the ColumnOrderType property. If the value is
HPROP:NoColumnOrderBy, then all fields in the field queueare marked
as "NoSort" and the browse order can not be changed with aclick on
the browse header. This is irreversible during the life of a browse.
The browse would have to be cancelled and restarted to undo
HPROP:NoColumnOrderBy. Normally this method is called by the
template when the programmer changescertain parameters on the
Data Access button in the template.

SETDRAGCOLUMN VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Sets the column number of the column being
"dragged" and turns on Clarion Drag and Drop. Since drag and drop is
normally hotwired to the mouseleft key, this allows any other (and
less commonly used) alert key to begin a drag and drop sequence.

SETFETCHRECORD VIRTUAL

Parameters: Byte xTorF

Return type: Does not return a value

Description: Virtual method. Sets the SELF.FetchRecordOnSelect flag to True or
False ignoring all other values.

SETFILLFORWARD VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Sets the FillForward property to true.

SETFILTERSCOPE VIRTUAL

Parameters: Byte xScope
<Byte xForce>

Return type: Does not return a value

Description: Virtual method. Set the filter scope property, ignoring any out-of-
bounds values. If the second parameter is nonzero the browse will be
immediately refreshed. Otherwise, no refresh happens till some other
activity such as a click on the browse header refreshes the browse.

SETGLOBALFILTER VIRTUAL

Parameters: String xFilter

Return type: Does not return a value

Description: Virtual method. Sets the global filter but will have no effect until
filter scope has been set to global with

 75

 Icetips Cowboy SQL

SELF.SetFilterScope(HPROP:FilGlobal) and some other activity such as
a header click causes a browse refresh.

SETHEADER VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Sets the header of the current sort column to the
header with carets and the appropriate signs to indicate it has become
the sort column, by default + or -

SETJOINTYPE

Parameters: Byte xJoinType=HPROP:JoinOuter

Return type: Does not return a value

Description: Sets the SELF.JoinType Flag to inner or outer, ignoring all others.

SETLIST VIRTUAL

Parameters: Long xList

Return type: Does not return a value

Description: Virtual method. Sets SELF.List property to the list box FEQ in xList.

SETLOADTYPE

Parameters: Byte xType=HPROP:PageLoad

Return type: Does not return a value

Description: Sets the browse load type to HPROP:PageLoad (read: size-defineable
batch load) or HPROP:FullLoad (which loads the entire data set to the
queue). Load type can be changed at run time. Should be followed
by a call to SELF.Reset(True).

SETLOCATOR

Parameters: Long xLocCtl

Return type: Does not return a value

Description: Sets the SELF.LocCtl property to the locator FEQ given in xLocCtl.

SETLOCATORPIC VIRTUAL

Parameters: <String xPic>

Return type: Does not return a value

Description: Virtual method. Sets the locator picture to match the current sort
(search) column.

 76

 Icetips Cowboy SQL

SETLOCATORTYPE VIRTUAL

Parameters: Byte xLocType

Return type: Does not return a value

Description: Virtual method. Set the locator type to HPROP:LocSimple or
HPROP:LocProgressive. All other values are ignored and default to
HPROP:LocSimple

SETORDER VIRTUAL

Parameters: Long xOrder

Return type: Does not return a value

Description: Virtual method. Changes the order setting on the current column.
This method does not force a browse refresh.

SETORDERSIGN

Parameters: String pAsc
String pDesc

Return type: Does not return a value

Description: Sets the Ascending and Descending order signs or characters to use.
By default they are set to + and -

SETQUEUE VIRTUAL

Parameters: *QUEUE xQ
*Byte xMark
*String xPos

Return type: Does not return a value

Description: Virtual method. References the SELF.Q property to the browse Queue
specified in xQ. Also references the Queue marker field and the
Queue position field.

SETREVERSE

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Toggles the SELF.Order property between
HPROP:Ascending and HPROP:Descending. The lagging value,
SELF.LastCol ensures that a reversal only happens if you request it of
the current sort column. I.E. a column doesn't reverse the first time
you click on it, only if you click on it a second time. The first click
displays it in its current order state.

SETROWS VIRTUAL

Parameters: Long xRows

 77

 Icetips Cowboy SQL

Return type: Does not return a value

Description: Virtual method. Set the property that determines the number of rows
that are added to a browse each time the ResetQueue method is
called.

SETSCROLLTHUMB VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Positions the vertical scroll bar thumb at top, bottom
or in the middle depending on the position in the queue. If at the top,
it's at top, if at the end, it's at the bottom, anything else results in the
thumb being in the middle.

SETSORTCOLOR VIRTUAL

Parameters: <Long xColor>

Return type: Does not return a value

Description: Virtual method. Sets the color of the text in the current sort column
to the color specified in xColor or in the SELF.SortColor property in
the event that xColor is omitted.

SETSORTCOLUMN LONG, PROC

Parameters: Long xCol

Return type: Long, Proc

Description: Allows setting of the current sort column property without exposing
the property to illegal values. Non-sorting columns are ignored.

SETSORTSIGN

Parameters: String pPrefix
String pPostFix

Return type: Does not return a value

Description: Sets the characters used to indicate that the column is the active sort
column. By default < and > are used.

SETSORTWIDTH VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Sets the width of the current sort column to
accomodate the carets and the sort order signs (+,-) when a column
becomes the sort column.

 78

 Icetips Cowboy SQL

SETVIEW

Parameters: *View xView
FILE xPrimary
String xAlias

Return type: Does not return a value

Description: Virtual method. References the SELF.Vw property to the browse VIEW
specified in xView. Also stores the primary file name and it's alias.

SETVIEWPROCEDURE VIRTUAL

Parameters: String xProcID

Return type: Byte, Proc

Description: Virtual method. Sets the view procedure which will be in effect the
next time the browse is refreshed by a call to the ResetQueue
method.

SETVIEWPARAMETER BYTE, PROC, VIRTUAL

Parameters: String xProcID
Byte xParamNum

Return type: Byte, Proc

Description: Virtual method. Establishes a change to a parameter of an installed,
stored procedure identified by xProcID and xParamNum

SETWHERECLAUSE

Parameters: String xWhere

Return type: Does not return a value

Description: Sets the SELF.WhereClause property to the value passed in xWhere.

SORTQUEUE VIRTUAL

Parameters: Byte xOrder
Byte xCol

Return type: Does not return a value

Description: Virtual method. When the queue is fully loaded with the entire data
set or query set, this method takes over queue sorting, relieving the
DB from having to sort the data. This happens with small data sets or
when the operator browses the entire file. Or when the
SELF.LoadType flag is set to HPROP:FullLoad.

SWAPCOLUMNS LONG, PROC

Parameters: Long xCol1
Long xCol2

Return type: Long, Proc

 79

 Icetips Cowboy SQL

Description: Temporarily buffers one of the columns (into column 999), replaces it
with the "dropped" column and then puts the buffered one back into
place where the dropped one started.

SWAPPROPERTY PRIVATE

Parameters: No parameters

Return type: Does not return a value

Description: Private method. Pushes the final set of format strings into the listbox
with PROP:Format.

TAKEACCEPTED LONG, PROC

Parameters: Long xField
Long xEvent

Return type: Long, Proc

Description: Called from the WindowManager.TakeAccepted method and processes
the EVENT:Accepted on a number of controls.

TAKEFIELDEVENT LONG, PROC

Parameters: Long xField
Long xEvent

Return type: Long, Proc

Description: Called from WindowManager.TakeFieldEvent, this method processes
various events for the listbox and also for various of the controls
related to the SQL browse class.

TEMPLATEAUTOINIT

Parameters: No parameters

Return type: Does not return a value

Description: A placeholder method into which the template writes initialization
code for the current instantiation of the class. This is cleaner than
using a long parameter list.

UPDATE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Brings currently selected record from Q to BUFFER or
DISK to BUFFER to Q depending on the setting of
SELF.FetchRecordOnSelect True/False (See FetchRecord)

UPDATEFORMAT LONG, PROC, VIRTUAL

Parameters: No parameters

 80

 Icetips Cowboy SQL

Return type: Long, Proc

Description: Virtual method. Saves the current browse format strings to the INI to
be able to restore the browse in the state that the user left it. The
SaveFormat property must be set to True (Default).

UPDATEHEADERS

Parameters: No parameters

Return type: Does not return a value

Description: Updates the Header queue with information about each header as it is
in the listbox at the moment this method is called. If you need to
change a listbox header at runtime, call this method after you are
done updating the headers. That will ensure that the header doesn't
revert back when the sort order is changed.

UPDATEQUEUE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Placeholder method only.

UPDATETOOLBARBUTTONS VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Virtual method. Clone of the ABC version of the same name. Used to
hook the toolbar into the browse.

 81

 Icetips Cowboy SQL

CCCCSSBBuuttttoonnss CCllaassss

Class Properties

AFTERINSERTACTION BYTE(1)

Description: Flag HPROP:LocateAfterInsert, HPROP:RefreshAfterInsert.

ALERTKEyS &CCSKEYQ

Description: A reference to the CCSKeyQ queue. The CCSKeyQ is declared as:

CCSKeyQ Queue
CCSKeyCode Long
CCSKeyAction Long
 End

CANCTL LONG (0)

Description: FEQ of the Cancel control.

CANFLAG LONG (2)

Description: Cancel button accepted return flag (given to GlobReq).

CANKEY LONG (001BH)

Description: Cancel hot key.

CHGCTL LONG (0)

Description: FEQ of the Change control.

CHGKEY LONG (000DH)

Description: Change hot key.

CLSCTL LONG (0)

Description: FEQ of the Close control.

CLSFLAG LONG (FALSE)

Description: Close button accepted return flag (given to GlobalReq).

CLSKEY LONG (001BH)

Description: Close hot key.

 82

 Icetips Cowboy SQL

DELCTL LONG (0)

Description: FEQ of the Delete control.

DELKEY LONG (002EH)

Description: Delete hot key.

GLOBREQ &BYTE,THREAD

Description: Reference to global request variable.

HIDESELECT BYTE(0)

Description: True of false flag to indicate if Select button should be hidden.

INSCTL LONG (0)

Description: FEQ of the Insert control.

INSKEY LONG (002DH)

Description: Insert hot key.

KEYSALERTED BYTE(FALSE)

Description: True once the keys are alerted, false after Kill.

LIST LONG (0)

Description: List control FEQ.

POPUP &POPUPCLASS

Description: A reference to the ABC PopupClass.

SELCTL LONG (0)

Description: FEQ of the Select control.

SELFLAG LONG (TRUE)

Description: Select button accepted return flag (given to GlobReq).

SELKEY LONG(0453H)

Description: Select hot key.

 83

 Icetips Cowboy SQL

USEPOPUPMENU BYTE(FALSE)

Description: Flag that determines if the listbox will use the popup menu.

Class Methods

INITCANCEL VIRTUAL

Parameters: Long xCan
Long xCanKey
Byte xRtnFlag
*Byte xGlbReq

Return type: Does not return a value

Description: Virtual method. Initializes the Cancel button.

INITCLOSE VIRTUAL

Parameters: Long xCls
Long xClsKey
Byte xRtnFlag
*Byte xGlbReq

Return type: Does not return a value

Description: Virtual method. Initializes the Close button.

INITPOPUP

Parameters: No parameters

Return type: Does not return a value

Description: Initializes the Popup menu. Creates, instanciates and initializes the
PopupClass instance. It also alerts the RightMouseUp key.

INITSELECT VIRTUAL

Parameters: Long xSel
Long xSelKey
Byte xRequest
Byte xRtnFlag
*Byte xGlbReq

Return type: Does not return a value

Description: Virtual method. Initializes the Select button.

INITUPDATE VIRTUAL

Parameters: <Long xIns>
<Long xChg>
<Long xDel>

 84

 Icetips Cowboy SQL

Long xInsKey
Long xChgKey
Long xDelKey

Return type: Does not return a value

Description: Virtual method. Sets up the update buttons, Insert, Change and
Delete, alerts hotkeys, sets up popup menu etc.

KILLKEYS

Parameters: No parameters

Return type: Does not return a value

Description: Disposes of the AlertKeys queue.

KILLPOPUP

Parameters: No parameters

Return type: Does not return a value

Description: Disposes of the Popup class.

REGISTERKEY

Parameters: Long pKeyCode
Long pAction

Return type: Does not return a value

Description: Registers the key to perform the specified action, which can be
InsertRecord, ChangeRecord, DeleteRecord or SelectRecord. This
enables multiple hotkeys for each action.

TAKEALERTKEY LONG

Parameters: Long pKeyCode

Return type: Long

Description: The keycode being pressed is passed to this function, and based on the
keycode it will return the action keycode, i.e. Self.InsKey, Self.ChgKey
or Self.SelKey. This enables multiple hotkeys for each action.

WDEBUG

Parameters: String pS

Return type: Does not return a value

Description: This method is implemented in the Locator class and the Buttons
class. It uses the OutputDebugString api call to write to debug output
port. This is best used in cooperation with tools such as DebugView
from System Internals (www.systeminternals.com) By making this a
public method, all our users can use it for their debugging purposes in
browse procedures that use the SQL templates/classes.

 85

 Icetips Cowboy SQL

CCCCSSSSiizzeess CCllaassss

Class Methods

COLUMNWIDTH LONG,VIRTUAL

Parameters: STRING xText
LONG xCtl
LONG xWidth

Return type: Long

Description: Virtual method. This method returns the width that is needed for the
column to be able to show the full column header text. Care must be
taken not to call this method too early or in modal events as it creates
a string control to measure the width of the header text.

 86

 Icetips Cowboy SQL

CCCCSSLLooccMMaannaaggeerr CCllaassss

Class Properties

OQ &LOCOWNERQ

Description: Queue of references to browse objects sharing locator. The
LocOwnerQ is declared as:

LocOwnerQ QUEUE,TYPE
BrwObj &CCSSql1
BrwCtl LONG(0)
LocCtl LONG(0)
 END

Class Methods

ADDLOCATOROWNER VIRTUAL

Parameters: CCSSql1 xBrwObj
LONG xBrwCtl
LONG xLocCtl

Return type: Does not return a value

Description: Virtual method. Adds another potential locator owner to the list of
locator owners.

CLEARLOCATORS BYTE, PROC, VIRTUAL

Parameters: No parameters

Return type: BYTE,PROC

Description: Virtual method. Clear any outstanding locators on all browses in a
shared locator situation. When no shared locators, clear just the
locator for the relevant browse.

CLEARLOCATOR BYTE, PROC, VIRTUAL

Parameters: No parameters

Return type: BYTE,PROC

Description: Virtual method. Call the clear locator function of the browse object
currently owning the locator.

CLEARLOCATORNOFORCE VIRTUAL

Parameters: No parameters

Return type: Does not return a value

 87

 Icetips Cowboy SQL

Description: Virtual method. Call the clear locator (no force) function of the
browse object currently owning the locator.

CONSTRUCT

Parameters: No parameters

Return type: Does not return a value

Description: Constructor for the class.

DESTRUCT

Parameters: No parameters

Return type: Does not return a value

Description: Destructor for the class.

LOCATE BYTE, PROC, VIRTUAL

Parameters: No parameters

Return type: BYTE,PROC

Description: Virtual method. Call the locate function of the browse object
currently owning the locator.

SWAPLOCATOR VIRTUAL

Parameters: LONG xBrwCtl

Return type: Does not return a value

Description: Virtual method. Switches ownership of the locator to the browse with
FEQ xBrwCtl.

WDEBUG

Parameters: String pS

Return type: Does not return a value

Description: This method is implemented in the Locator class and the Buttons
class. It uses the OutputDebugString api call to write to debug output
port. This is best used in cooperation with tools such as DebugView
from System Internals (www.systeminternals.com) By making this a
public method, all our users can use it for their debugging purposes in
browse procedures that use the SQL templates/classes.

 88

 Icetips Cowboy SQL

CCCCSSTToooollbbaarrLLiissttbbooxxCCllaassss CCllaassss

Duplicate of ABC ToolBarListBoxClass except that it does not use a reference to the ABC browse
class. Which isn't in use here. The SELF.Browse property in this class is the list box FEQ. In fact,
all the original class was doing is determining the list box FEQ by inspecting the
SELF.Browse.ListControl property. This class is not exposed in the normal window template
interface precluding any overriding through embedding.

Class Properties

BROWSE LONG (0)

Description: List box FEQ. In the original ABC version, this is a reference to the ABC
Browse Class.

Class Methods

DISPLAYBUTTONS VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description: Calls the ABC ToolbarTarget.DisplayButtons.

TAKETOOLBAR VIRTUAL

Parameters: No parameters

Return type: Does not return a value

Description:

TAKEEVENT VIRTUAL

Parameters: <*LONG VCR>
WindowManager WM

Return type: Does not return a value

Description:

TRYTAKETOOLBAR VIRTUAL

Parameters: BYTE

Return type: Does not return a value

Description: Virtual method. Calls TakeToolbar if the listbox is visible.

 89

 Icetips Cowboy SQL

CCoommppaattiibbiilliittyy aanndd TTeecchhnniiccaall iissssuueess
Currently we are not aware of any compatibility or technical issues with this product. We have
done some testing on the SQL templates under Clarion 6 and they seem to operate without
problems in Clarion 6, Early Access release 5 (EA5) as well as in Early Access release 4 - 4.5. If
you experience problems with the SQL templates under Clarion 6, then please let us know as soon
as possible either by email to support@icetips.com or by using the Icetips Software Online
Support - see page 90 for more information about support.

 90

 Icetips Cowboy SQL

TTeecchhnniiccaall SSuuppppoorrtt
We offer technical support by email, by newsgroup, or by an internet bulletin board. Starting in
July 2003 we are also introducing a new and revolutionary support center which we call Icetips
Software Online Support or I-SOS for short.

EEmmaaiill
Please email your questions to either support@icetips.com or wizard@icetips.com and we will
get back to you as soon as possible. We usually respond to technical support emails within an
hour.

NNeewwssggrroouuppss

You can also post questions on the Topspeed.Topic.Third_Party newsgroup on the
news.softvelocity.com news server or comp.lang.clarion, which you can get to at that same
news server or on the web at:

http://groups.google.com/groups?hl=en&group=comp.lang.clarion

IInntteerrnneett BBuulllleettiinn BBooaarrdd
We have a Internet Bulletin Board at the Icetips website, where you are welcome to post
questions. We monitor it regularly, and there are quite a few people who visit it frequently. Go
to:

http://www.icetips.com/bboard/index.php

IIcceettiippss SSooffttwwaarree OOnnlliinnee SSuuppppoorrtt,, II--SSOOSS
We are moving all of our software products to use our Online Support center, that we call I-SOS.
This is available directly from within the products, from templates, compiled programs and
anywhere where we feel that our users may need help. We are still in the development phase of
this new technology, but e xpect to have it implemented in all our products by the end of 2003,
probably sooner. The Icetips Cowboy SQL templates, version 6.0 is the first of our products to
implement this in the templates. To log into our Online Support Center, please go to:

Http://www.icetips.com/supportcenter/index.php

 91

 Icetips Cowboy SQL

IInnssttaalllleedd ffiilleess
Following is a complete list of the installed files. Please note that it is possible that the
dates/times and file sizes does not match completely with what is installed as this list was
created before everything was completed. Also note that the file dates are in dd.mm.yyyy
format.

Files in: 3rdParty\Docs\ITCowboySQL
Date Time Size Filename

07/01/2003 04:23 PM 1,165,842 IcetipsCowboySQL.pdf
06/24/2003 09:13 PM 13,623 Versions.txt
(Note that these two files are probably not listed here with the right size)

Files in: 3rdParty\Images
Date Time Size Filename

03/02/2003 03:39 PM 2,847 ITLogo.gif

Files in: 3rdParty\Template
Date Time Size Filename

03/02/2003 03:39 PM 2,847 ITLogo.gif
07/02/2003 10:59 AM 205,327 Ccsabc.tpl
07/01/2003 06:02 PM 5,704 ITSQL60ABC.tpw
06/28/2003 04:54 PM 23,323 CCSABCEX.TPW

Files in: 3rdParty\Tools\ITInstall
Date Time Size Filename

06/17/2003 10:55 AM 781,312 itutil.exe
07/01/2003 07:19 PM 1,409 itccs.itc

Files in: Bin
Date Time Size Filename

06/30/2003 01:11 PM 19,968 itccs60.dll
06/30/2003 01:05 PM 18,432 itccs55.dll

Files in: LibSrc
Date Time Size Filename

07/01/2003 05:00 PM 7,877 ccsbutns.clw
07/01/2003 05:00 PM 2,517 ccstoolb.clw
07/01/2003 05:00 PM 4,811 ccslocat.clw
07/01/2003 05:00 PM 147,424 ccssql1.clw
07/01/2003 05:00 PM 1,120 ccssizes.clw
07/01/2003 05:00 PM 1,320 ccslocat.inc
07/01/2003 05:00 PM 26,352 ccssql1.inc
07/01/2003 05:00 PM 3,616 ccsbutns.inc
07/01/2003 05:00 PM 941 ccstoolb.inc
07/01/2003 05:00 PM 815 ccssizes.inc

 92

 Icetips Cowboy SQL

LLaasstt mmiinnuuttee cchhaannggeess
Here are listed some last minute changes that were implemented too late for us to add them in
the right places in the manual.

DDeeffaauulltt ssoorrtt oorrddeerr
This is a new button on the "Sort" tab on the browse template. It allows setting the default sort
order to either ascending or descending. Default is Ascending. Note that this only applies to the
column that is active sort order column when the browse starts. So if you set a default sort
column and Descending sort order, the browse will open with that column as active browse
column in descending order.

SSoorrtt oorrddeerr
This button has been renamed to Sort order column so it is not confused with the new Default
sort order.

LLiimmiittaattiioonnss
1. We have discovered that using Force INNER joins with listbox that has colors, icons or styles

will mess up the listbox. We will have this fixed for next build which should be out by the
end of July, 2003.

 93

 Icetips Cowboy SQL

CChhaannggeess ffrroomm pprreevviioouuss vveerrssiioonn
The following changes were noted down during the development phase of the Icetips Cowboy SQL
version 6.000.

VVeerrssiioonn 66..000000 FFiinnaall rreelleeaassee

June-17-2003 - June-30-2003

36. Documents Writing up documentation for the SQL templates.

June-16-2003

35. Template Cleaning up.
34. Template Buttons to go to our website and email us directly from the template.

June-14-2003

33. Template Implemented "Restore Child After Cancel-CCS Browse" extension for forms that
also have CCS browses.

32. Template Cleaning up template.

June-13-2003

31. Template Cleaning up and going through template windows/prompts to prepare
screenshooting

30. Template Implemented changes for ClarioNet compatibility originally done by Robert
Rodgers.

29. Classes Swap Columns did not work. Fixed.

June-12-2003

28. Classes Default sort column added. Overrides saved browse format.
27. Classes Locator on dates checked. Locator on numbers used Like instead of = Fixed.
26. Classes Locator string with single quote in it (like Sam's) resulted in invalid SQL.

Fixed.
25. Classes Work on fixing Swap Columns.

June-10-2003

25. Classes ActiveInvisible broken. Fixed.
24. Template UpdateButtons template: Procedure dropdown was too narrow. Fixed.
23. Template Work on implementing Windows Style tagging.

June-04-2003 - June-10-2003

22. Template Work on implementing better ways to use variables in the SQL browses.

 94

 Icetips Cowboy SQL

June-03-2003

21. Template Implemented Reset Fields for item 20.
20. Classes Implemented FieldPairClass to allow reset variables that force the browse to

reset. Hooked in through the ResetRequired method of the
WindowComponent Interface.

19. Classes Testing WindowComponent - seems to work now without problems. Need to
test in a bigger app.

18. Classes Replaced strings with CCSSQL1 with Self.ObjectName in debugging code.
17. Template Passes the %ObjList to the Init Method, see item 16.
16. Classes Init method now takes the name of the object from the template.
15. Template Implemented call to Updateheader in WindowManager.Open method call.
14. Template Kill method was not being called from templates resulting in memory leak.

Fixed. Not true: It was being called from the WindowComponent Interface
Kill method.

13. Template Implemented settings for sort order indicators and sort column indicators, see
item 10.

June-02-2003

12.Template Modified the order in which the window property is set, the Init and
TemplateAutoInit are called. Added a priority space between the call to Init
and TemplateAutoInit so code can be placed there, for example to changet he
sort order indicators etc.

11. Classes Changed the way the column headers are built up to accomodate for item 8
and also to make it possible to use runtime translation. Previously the column
headers would not register correctly (i.e. they would write to the trn as
"<+header>" for the active sort header instead of just "header". The
translation of the column headers would also not stick because the translated
headers weren't in the column queue in the SQL class. Fixed.

10. Classes Implemented methods and properties to change the sort order indicators (+/-)
and sort column indicators (</>).

May-30-2003

 9. Classes Added properties and methods to change the order signs. Default values set
in Init method.

 8. Classes Reverted the Reset things. Don't think there is any need for them now with
the WC working so well!

 7. Classes Tested WindowComponent implemenatation. Needs some more work.

May-27-2003

 6. Classes Implemented Reset control registration and event registration. Controls can
be registered along with events

 5. Template Implemented ActiveInvisible in templates. In testing.
 4. Classes Implemented registration of WC interface. In testing.
 3. Template Classname appears on the Action tab now for convenience.

 95

 Icetips Cowboy SQL

May-11-2003

 2. Template Code to extract keycodes for update buttons, would be out of scope and not
execute, leaving the impression that the update button keys had not been
properly selected. Fixed.

 1. Classes Implemented ActiveInvisible. It basically shortstops the ResetQueue method if
it is set to false and the control is not visible. Basically duplicated
methods from ABC. Need to duplicate methods to trigger changes and
implement in templates. No testing yet.

VVeerrssiioonn 66..000000 BBeettaa BB,, MMaayy 55,, 22000033

KNOWN ISSUES in 6.0, Beta B
 1. Template Child sync on multi-component keys only works correctly with ONE child

browse. See item 14 in Beta A. Will be fixed for next release.
 2. Documents Still not there. It's on my (already heavy) schedule for May 19 - May 25.

Changes from Beta A
 1. Template Added conditional compile defines for ClarioNet compatibility.
 2. Template Added option to put literal filters into the filter field. If the filter starts with

an exclamation mark (!) the filter is not quoted by the templates and it's up to
the developer to supply the exact clarion/SQL code that goes into the filter.

 3. Template Added several new options to the Update button template. Suppress clear and
Clear record are now available as checkboxes. This makes it easy to prime the
record in the browse. Also added a Pre and Post priming. When creating a
record RI must be maintained and certain required RI fields may need to be
populated. This is done with the Pre-priming. Once the record is actually
created, these fields can be reset to NULL or set to another value in the Post
priming which is done before the record is sent to the update form. The
assignment can be done to a value, variable, NULL or by calling a procedure to
fill the variable. This can be local variables or table columns. A button was
added to jump stright into the the PrimeRecord embed from Insert Options to
make it easy to add any additional code.

 4. Template Modified the CONTROLS part of the SQLBrowseNL template so that it pops up
the listbox formatter when the table has been dropped. ,FROM(SQL:Q) added
to the LIST control. (ROLLED BACK - this generates a FROMNo parameters
queue name that is not compatible with the generated queue label. This
would have to be fixed in several places in the templates and I'm not going to
do that right now)

 5. Template Added support for Popup menu. Added mimic support for Select, Insert,
Change and Delete buttons. Implemented in CCSButns.inc, CCSButns.clw,
CCSSQL1.clw and CCSABC.TPL

 6. Classes Implemented options to add alerted keys to insert/change/delete. Seems to
work fine. Changes in CCSButns.inc, CCSButns.clw and CCSSQL1.clw.

 7. Classes Prototyped OutputDebugString in CCSButns.clw to make it easier to debug the
classes. Method wDebug is available for anyone to use.

 96

 Icetips Cowboy SQL

 8. Classes The CCSSql1 class now implements the WindowComponent Interface for future
use. So far, responses to Kill, TakeEvent, Reset and ResetRequired interface
methods has been added.

 9. Classes Init and Kill methods added to class. Kill method calls KillPopup and KillKeys
methods and removes the WindowComponent interface.

10. Template All appropriate prompts changed from @S... to EXPR
12. Template Added support for additional hotkeys as pr. changes in item 6 to the classfiles.
13. Template Re-instated old locator and renamed the Icetips locator to

ITSQLBrowseLocator. That way it will not break any functionality in existing
CCS applications.

14. Template Moved prepare code around in the SQLBrowseUpdateButtons template to
eliminate "undefined symbol" error on the procedure information. Think I've
got this issue settled.

15. Template Copyright changed to Icetips Software and Icetips Logo added to templates.
16. Classes Copyright changed to Icetips Software.

VVeerrssiioonn 66..000000 BBeettaa AA,, FFeebbrruuaarryy 2200,, 22000033

Changes from 5.5
 1. Template Modified the Locator control template so that it uses the default font and also

so that it prompts for the string, entry and button, not string, button and
entry. Also modifed the entry field to be 10 du high instead of 12 du.

 2. Template Modified the templates to make an option to force use of files if LazyOpen is
on.

 3. Template Fixed locator so now there can be multiple locators on a window.
 4. Template Icon selection now has a file selection dialog box and conditional icons have

file selection dialog and an Expression field to select condition.
 5. Template Added an option to synchronize child browses with relations in compound keys

- enables multiple field assignment for synchronized filtering.
 6. Template Full support for Color added.
 7. Template Full support for conditional Colors added.
 8. Template Full support for Icons added.
 9. Template Full support for conditional Icons added.
10. Template Full support for Styles added.
11. Template Full support for conditional Styles added.
12. Template Style Builder. Lets you build styles and name them and you use the name as

Styles instead of numbers like ABC does.
13. Template Full greenbar support - uses Steve B. Greenbar fully integrated into the SQL

templates (no extension, just a button on the SQL template window)
14. Template Supports child synchronizing on compound keys (original only supported one

field, which is not going to work on tables that are set up properly for
replication for example)

15. Classes Support for SuppressClear in PrimeRecord. Allows multi-component keys to be
autoincremented properly and fields to be populated when Clarion handles
autoinc.

